

MAINTENANCE CONSIDERATIONS TO ENSURE DATA QUALITY

7.1 INTRODUCTION

To ensure good quality data during a water quality monitoring project a maintenance program must be in place for the monitoring sondes, platforms and equipment employed. There are three basic types of maintenance procedures (U.S. Department of Energy):

- **Reactive or corrective maintenance** is an unscheduled action performed on a system, equipment or one of its components in the attempt to restore it to a specified performance condition. Basically, the system or product is fixed once it brakes down or fails to perform as desired.
- **Preventive maintenance** is a scheduled action performed on a system, equipment or one of its components to detect or mitigate performance problems, degradations, functional or potential failures, *etc.* with the goal of maintaining the systems' or product's performance and it's level of reliability.
- **Predictive maintenance** is the action performed on a system, equipment or one of its components to determine their performance and act in accordance of the results. For example, instead of changing the oil in the car every X miles (preventive), the oil is analyzed to determine its performance and depending on the results, the oil will be kept or changed. Thus the oil can be changed before the X miles or kept for extra miles. The need for maintenance is determined by the condition of the system, equipment or component analyzed.

Even though, it is most probable that in a water quality monitoring endeavor all three of these types of maintenance procedures are going to be applied, the maintenance program must be focused on preventive and predictive maintenance.

To implement a successful maintenance program, the following three areas must be covered:

- **a) Training**: the personnel that perform maintenance activities (*e.g.* calibration and post calibration of monitoring sensors, equipment and station inspections, cleaning and replacement of instruments or parts) must have the adequate training to ensure that they possess the necessary competence to do an effective and efficient job.
- **b) Procedures and record management**: procedures and record management must be in place to ensure that (among other things):
 - \rightarrow The maintenance activities are well documented.
 - \rightarrow All instruments calibrated will conform to required specifications.
 - \rightarrow The operation and control of the processes are effective.
 - \rightarrow Methodologies to assess the root cause of problem are known.
 - \rightarrow Maintenance schedules are established.
 - \rightarrow Maintenance records are well kept and easily accessed and traceable.
 - \rightarrow Evidence of conformity of calibration is provided.

c) Procurement and spare parts management: to ensure the reliability of the monitoring endeavor, each monitoring equipment or system must have an adequate spare parts procedure to guarantee the availability of resources.

There are three main hardware systems that need to be addressed in a water quality monitoring maintenance program:

- → Monitoring sondes
- → Monitoring stations
- \rightarrow Verification equipment

When addressing the maintenance program of these systems, it is important to consider that:

- → Not all equipment or components have equal importance and equal impact on data quality.
- → The probability of failure or mal-function is different between equipment, parts, and structures.
- \rightarrow Service or maintenance cycles differ between equipment.
- \rightarrow There is limited financial and personnel resources.

NOTE: To assure data quality, a quality assurance/control & maintenance program for the monitoring data must be in place. To obtain guidelines on how to approach this issue, the reader should consult EPA QA/G-5, EPA QA/G-8 and Helsel and Hirsch (2002).

7.2 SONDE MAINTENANCE

Data quality is directly related to the monitoring sonde performance. Therefore, it is crucial to have a sonde maintenance program.

In general, the maintenance program would be based on "maintenance cycles" correlated to the time frame the sondes can stay deployed without affecting data quality. The cycle will depend on the probes' characteristics, environmental conditions (*i.e.* high fouling environments), battery life, and any other factors that affect the sonde's performance. In most monitoring situations the maintenance cycles follow a seasonal pattern. For example, in high fouling environments, the length of time the sonde can remain deployed will decrease as water temperature increases; monitoring sondes that can be deployed for three weeks to one month in winter may need to be changed on a weekly basis in summer.

The sonde maintenance program must address at least the following procedures:

- Prepare the sonde for deployment
- Calibration for deployment
- Post-deployment performance verification

7.2.1 PREPARE THE SONDE FOR DEPLOYMENT

The sonde must be adequately prepared to handle the environmental factors that could influence data quality. These physical, biological, and chemical factors are characteristic of the monitoring site location. Therefore, no unique solution exists to address these factors and the best approach to control them will have to take into account, not only the site characteristics, but also, the deployment cycle and the design of the monitoring station.

Among the environmental factors, special attention must be given to biofouling given that is one of the main factors affecting the operation, maintenance and data quality of the sondes (some examples of common and extreme biofouling are displayed in Figure 7.1). Among the many methods employed to reduce or prevent biofouling, the most common ones are:

- Painting the housing of the sensors with antifouling coatings.
- Covering the housing of the sensors with antifouling copper tape.
- Using the adequate anti-fouling probes' wiper/wipers.
- Painting the entire wiper body, including the undersides with anti-fouling paint.
- Using sensors with copper alloy housings.
- Using copper-alloy sonde guard or painting the sensor guard with anti-fouling coatings (do not paint the threads).

Figure 7.1 Copper tape on guard and probes

NOTE:

- → Black anti-fouling paint is strongly recommended. The black color will eliminate any chance of stray reflection from the infrared light source when the probe is making measurements (YSI, 2009).
- → Painting the body of the instrument is not recommended. Instead of using paint, the body can be wrapped with plastic wrap and secure with duck tape or with plastic electrical tape.
- → In addition to the use of anti-fouling paint or copper product, during long-term deployments in extreme fouling environments, the deployment cycle must be adjusted to the appropriate length to ensure data integrity.

Figure 7.2 Biofouling examples (Source: CBNERRVA, NIW - NERR, CICORE)

7.2.2 CALIBRATION FOR DEPLOYMENT

It is crucial that all sensors are calibrated following strictly the manufacturer's calibration procedures. Therefore, management must assure that:

- Laboratory personnel have the necessary competence for the effective and efficient application of the calibration procedures.
- Systems are in place to assure sensor's performance verification.
- Records are kept to provide evidence that the requirements have being met.

Two examples of calibration logs are presented in Figure 7.3 and 7.4.

• Critical parts, components and chemicals are in stock to ensure proper maintenance activities.

NOTE:

→ Many multiparameter sondes are equipped with depth sensors that measure water depth using a differential strain gauge transducer with one side of the transducer exposed to water and the other to a vacuum. The transducer measures the pressure of the water column plus the atmospheric pressure (YSI, 2008). During calibration, the depth is calibrated in air and a depth offset must be used if the pressure is different than 760 mm Hg.

To determine the correct depth offset, record the barometric pressure at the time of calibration from a meteorological station at the calibration site or a reliable local station. Tables 7.1 to 7.3 show offset correction as a function of atmospheric pressure. These tables can be use to determine the offset to use during calibration (CDMO, 2207).

 \rightarrow When using a plastic or copper screen (or copper tape) at the bottom of the sensor

guard there is a possibility that interference with turbidity readings could result from the screen. To cancel any affects it might have, it is necessary to calibrate the turbidity probe (1 point) in the zero standard with the deployment sensor guard installed.

The amount of offset is generally determined by the reflectivity of the guard and screen. In case of using plastic screens, it is a good practice to use black screens or paint the screen with black antifouling paint. For copper screens, once the copper has taken on the patina color the amount of offset decreases. Another option would be to soak the parts in salt water to patina them before your calibration

(Source: NIW Bay NERR)

If copper tape is used and replaced every deployment, then new offset must be determined every time the guard is re-taped.

Pressure	Offset	Pressure	Offset	Pressure	Offset
mm Hg	meter	mm Hg	meter	mm Hg	meter
680	-1.088	730	-0.408	780	0.272
681	-1.074	731	-0.394	781	0.285
682	-1.060	732	-0.381	782	0.299
683	-1.047	733	-0.367	783	0.313
684	-1.033	734	-0.353	784	0.326
685	-1.020	735	-0.340	785	0.340
686	-1.006	736	-0.326	786	0.353
687	-0.992	737	-0.313	787	0.367
688	-0.979	738	-0.299	788	0.381
689	-0.965	739	-0.285	789	0.394
690	-0.952	740	-0.272	790	0.408
691	-0.938	741	-0.258	791	0.400
692	-0.924	742	-0.245	792	0.435
693	-0.911	743	-0.231	793	0.449
694	-0.897	744	-0.218	793	0.449
695	-0.884	745	-0.204	795	0.402
696	-0.870	746	-0.190	796	0.470
697	-0.856	740	-0.177	790	
698	-0.843	747	-0.163	798	0.503
699	-0.829	748			0.517
700	-0.829		-0.150	799	0.530
700		750	-0.136	800	0.544
	-0.802	751	-0.122	801	0.557
702	-0.789	752	-0.109	802	0.571
703	-0.775	753	-0.095	803	0.585
704	-0.761	754	-0.082	804	0.598
705	-0.748	755	-0.068	805	0.612
706	-0.734	756	-0.054	806	0.625
707	-0.721	757	-0.041	807	0.639
708	-0.707	758	-0.027	808	0.653
709	-0.693	759	-0.014	809	0.666
710	-0.680	760	0.000	810	0.680
711	-0.666	761	0.014	811	0.693
712	-0.653	762	0.027	812	0.707
713	-0.639	763	0.041	813	0.721
714	-0.625	764	0.054	814	0.734
715	-0.612	765	0.068	815	0.748
716	-0.598	766	0.082	816	0.761
717	-0.585	767	0.095	817	0.775
718	-0.571	768	0.109	818	0.789
719	-0.557	769	0.122	819	0.802
720	-0.544	770	0.136	820	0.816
721	-0.530	771	0.150	821	0.829
722	-0.517	772	0.163	822	0.843
723	-0.503	773	0.177	823	0.856
724	-0.489	774	0.190	824	0.870
725	-0.476	775	0.204	825	0.884
726	-0.462	776	0.218	826	0.897
727	-0.449	777	0.231	827	0.911
728	-0.435	778	0.245	828	0.924
729	-0.421	779	0.258	829	0.938

Table 7.1 Depth Offset (mm Hg) (Source: CDMO, 2207)

Pressure	Offset	Pressure	Offset	Pressure	Offset
mb	meter	mb	meter	mb	meter
930	-0.849	980	-0.340	1030	0.170
931	-0.839	981	-0.329	1031	0.180
932	-0.829	982	-0.319	1032	0.191
933	-0.819	983	-0.309	1033	0.201
934	-0.809	984	-0.299	1034	0.211
935	-0.798	985	-0.289	1035	0.221
936	-0.788	986	-0.278	1036	0.231
937	-0.778	987	-0.268	1037	0.242
938	-0.768	988	-0.258	1038	0.252
939	-0.758	989	-0.248	1039	0.262
940	-0.747	990	-0.238	1040	0.272
941	-0.737	991	-0.227	1041	0.282
942	-0.727	992	-0.217	1042	0.293
943	-0.717	993	-0.207	1043	0.303
944	-0.707	994	-0.197	1044	0.313
945	-0.696	995	-0.187	1045	0.323
946	-0.686	996	-0.176	1046	0.333
947	-0.676	997	-0.166	1047	0.344
948	-0.666	998	-0.156	1048	0.354
949	-0.656	999	-0.146	1049	0.364
950	-0.645	1000	-0.136	1050	0.374
951	-0.635	1001	-0.125	1051	0.384
952	-0.625	1002	-0.115	1052	0.395
953	-0.615	1003	-0.105	1053	0.405
954	-0.605	1004	-0.095	1054	0.400
955	-0.594	1005	-0.085	1055	0.425
956	-0.584	1006	-0.074	1056	0.425
957	-0.574	1007	-0.064	1057	0.446
958	-0.564	1008	-0.054	1058	0.456
959	-0.554	1009	-0.044	1059	0.466
960	-0.544	1010	-0.034	1060	0.476
961	-0.533	1011	-0.023	1061	0.486
962	-0.523	1012	-0.013	1062	0.497
963	-0.513	1013	-0.003	1063	0.507
964	-0.503	1014	0.007	1064	0.517
965	-0.493	1015	0.017	1065	0.527
966	-0.482	1016	0.028	1066	0.537
967	-0.472	1017	0.038	1067	0.548
968	-0.462	1018	0.048	1068	0.558
969	-0.452	1019	0.058	1069	0.568
970	-0.442	1020	0.068	1070	0.578
971	-0.431	1021	0.079	1071	0.588
972	-0.421	1022	0.089	1072	0.599
973	-0.411	1023	0.099	1072	0.609
974	-0.401	1023	0.1099	1073	0.609
975	-0.391	1024	0.109	1074	
975 976	-0.391	1025			0.629
976 977	-0.380 -0.370		0.130	1076	0.639
977		1027	0.140	1077	0.650
	-0.360	1028	0.150	1078	0.660
979	-0.350	1029	0.160	1079	0.670

Table 7.2 Depth Offset (mb) (Source: CDMO, 2207)

Pressure	Offset	Pressure	Offset	Pressure	Offset
in Hg	meter	in Hg	meter	in Hg	meter
27.40	-0.870	28.90	-0.352	30.40	0.166
27.43	-0.860	28.93	-0.342	30.43	0.176
27.46	-0.849	28.96	-0.332	30.46	0.186
27.49	-0.839	28.99	-0.321	30.49	0.197
27.52	-0.829	29.02	-0.311	30.52	0.207
27.55	-0.818	29.05	-0.300	30.55	0.218
27.58	-0.808	29.08	-0.290	30.58	0.228
27.61	-0.798	29.11	-0.280	30.61	0.238
27.64	-0.787	29.14	-0.269	30.64	0.249
27.67	-0.777	29.17	-0.259	30.67	0.259
27.70	-0.767	29.20	-0.249	30.70	0.269
27.73	-0.756	29.23	-0.238	30.73	0.280
27.76	-0.746	29.26	-0.228	30.76	0.290
27.79	-0.736	29.29	-0.218	30.79	0.300
27.82	-0.725	29.32	-0.207	30.82	0.311
27.85	-0.715	29.35	-0.197	30.85	0.321
27.88	-0.704	29.38	-0.186	30.88	0.332
27.91	-0.694	29.41	-0.176	30.91	0.342
27.94	-0.684	29.44	-0.166	30.94	0.352
27.97	-0.673	29.47	-0.155	30.97	0.363
28.00	-0.663	29.50	-0.145	31.00	0.373
28.03	-0.653	29.53	-0.135	31.03	0.383
28.06	-0.642	29.56	-0.124	31.06	0.394
28.09	-0.632	29.59	-0.114	31.09	0.404
28.12	-0.622	29.62	-0.104	31.12	0.414
28.15	-0.611	29.65	-0.093	31.12	0.414
28.18	-0.601	29.68	-0.083	31.13	0.425
28.21	-0.591	29.71	-0.073	31.21	0.435
28.24	-0.580	29.74	-0.062	31.24	0.445
28.27	-0.570	29.77	-0.052	31.24	0.450
28.30	-0.559	29.80	-0.032	31.30	0.400
28.33	-0.549	29.83	-0.031	31.33	0.477
28.36	-0.539	29.86	-0.021	31.36	0.487
28.39	-0.528	29.80	-0.021	31.39	
28.42	-0.528				0.508
28.42		29.92	0.000	31.42	0.518
28.45	-0.508	29.95 29.98	0.010	31.45	0.528
	-0.497		0.021	31.48	0.539
28.51	-0.487	30.01	0.031	31.51	0.549
28.54	-0.477	30.04	0.041	31.54	0.559
28.57	-0.466	30.07	0.052	31.57	0.570
28.60	-0.456	30.10	0.062	31.60	0.580
28.63	-0.445	30.13	0.073	31.63	0.591
28.66	-0.435	30.16	0.083	31.66	0.601
28.69	-0.425	30.19	0.093	31.69	0.611
28.72	-0.414	30.22	0.104	31.72	0.622
28.75	-0.404	30.25	0.114	31.75	0.632
28.78	-0.394	30.28	0.124	31.78	0.642
28.81	-0.383	30.31	0.135	31.81	0.653
28.84	-0.373	30.34	0.145	31.84	0.663
28.87	-0.363	30.37	0.155	31.87	0.673

Table 7.3 Depth Offset (in Hg) (Source: CDMO, 2207)

Reserve:		Site Name:	F	ile Name:	
		Datasonde Ma	intenance		
Date of Calibration:			cian(s):	TURD ODO	
Wipers replaced		TURB ODO	Wipers park 180° fro	TURB ODO	
Batteries replace			DO membrane replac		
Format flash dis	k		Membrane integrity t	est	
	Data	sonde and Probe Ide	entification Numbers		
Datasonde	-		DO/ODO		
pH			Conductivity		
Turbidity					
Comments		1.42			
(G)					
	P	re/Post Deployment	Calibration: (turn on pH mV a	and DO Chrg in Report menu)	
	Pre-Deployment	1	Post-Deployment	Sensor Diagnostics	
Standards 1	Before Cal Calil	orated Error		Pre-Deployment	
%DO @ 100% sat	%	<u>%</u>	%	RP DO chrg (range 25-75)	
BP @ cal (Rapid Pulse)	mm Hg		mm Hg	RP DO gain (0.8-1.7)	
Optical %DO @ 100% sat	%	%	%	Optical DO gain	
BP @ cal (Optical)				DO warm up test (hi/lo)	
Baro. Pres. (Depth Calib)	760.0 mm Hg (7	(60.0 for vented sonde)	760.0 mm Hg (760.0 for vented)	Cell const (4.6-5.45)	
Depth offset	m	m ¦	m offset	pH 7 (0 +/- 50 mV)	
	<u> </u>	!		pH 10 (-180 +/- 50 mV)	
SpCond mS/cm	mS/cm	mS/cm	mS/cm	pH 4 (+180 +/- 50 mV)	
121 2	<u> </u>	¦		Calculated pH slope	
pH 7		— — ¦			
pH 10		<u> </u>		Post-Deployment	
pH 4		i		DO chrg (range 25-75)	
Turk		—		DO warm up test (hi/lo)	
Turb NTU			NTU	pH 7 (0 +/- 50 mV)	
TurbNUU	NTU	NTU	NTU	pH 10 (-180 +/- 50 mV) pH 4 (+180 +/- 50 mV)	
Battery voltage	¥ (bower -650, 6038)	V (remove ext. power)	Calculated pH slope	
Dattery voltage	v (renove ext.)			calculated pri slope	
		Program	ming		
Interval	min	Start date		eo ang generation	h:mm:ss
Duration	days	Data file name		·	ays
Free memory	days	Set clock (status)	Y or N Free	bytes (status) ĸ	
Parameters recorded:	Date.	Time, Temp°C, SpCon, Sa	l, DO%, DO mg/L, Depth, pH	, Turb, Batt	
	1.4.4				
Comments - Pre:					
Comments - Post:					

Figure 7.3 NERRS 6-series calibration log

Date:	n							
Function	Temp. of Standard	Value of Standard	Initial Reading	Calibrated to	Comments			
Specific conductance			0					
pH calibrated (~7)								
pH slope (~ 4/10)								
Dissolved oxygen								
Ι	OATA NEEDED F	OR DISSOLV	ED OXYGEN	CALIBRATIO	N			
Altitude (A)=	_feet above msl		Barometr	ric pressure	inches			
Barometric Pressure (BI	P) Options		Baron	netric Pressure	Formulas			
Barometer		Barome	etric pressure (ir	nches)	x 25.4 = BPmm			
From local source after corr	rection (CBP)	BP	mm =	CBPmr	m - 2.5 (altitude/100)			
Estimated from altitu	de only	BI	P mi	m= 760 mm - 2.5 (altitude/100)				
For older Hydrolabs: Tal	ole DO value	x ALTCORI	R x BAF	ROCORR	= DO standard			
Function	If this is a Temp. of Standard	post calibration Value of Standard	n, give date of or Initial Reading	riginal calibration	n Comments			
Specific conductance	Standard	Standard	Treasung					
pH calibrated (~7)								
pH slope (~ 4/10)								
Dissolved oxygen								
DAT	A NEEDED FOR	DISSOLVED	OXYGEN PO	ST CALIBRAT	ION			
Barometric Pressure (BI				netric Pressure				
Barometer	-	Barome	etric pressure (ir	nches)	x 25.4 = BPmm			
From local source after corr	rection (CBP)	BP	mm =	CBPmr	n - 2.5 (altitude/100)			
Estimated from altitu	de only	BI	P mi	m= 760 mm - 2.5	5 (altitude/100)			
For older Hydrolabs: Tal	ole DO value	_ x ALTCORI	R x BAF	ROCORR	_= DO standard			
Check	k previous mainte	nance and use;	do the followir	ng before calibra	ation:			
Polish conductivity electrodes. two months or once			Date:		Name/comments:			
Change pH reference probe solut two months or once			Date:		Name/comments:			
Inspect DO membrane for nick within last six months or			Date:		Name/comments:			
Change battery in 400 series som	da Changa anas a	CI		1				

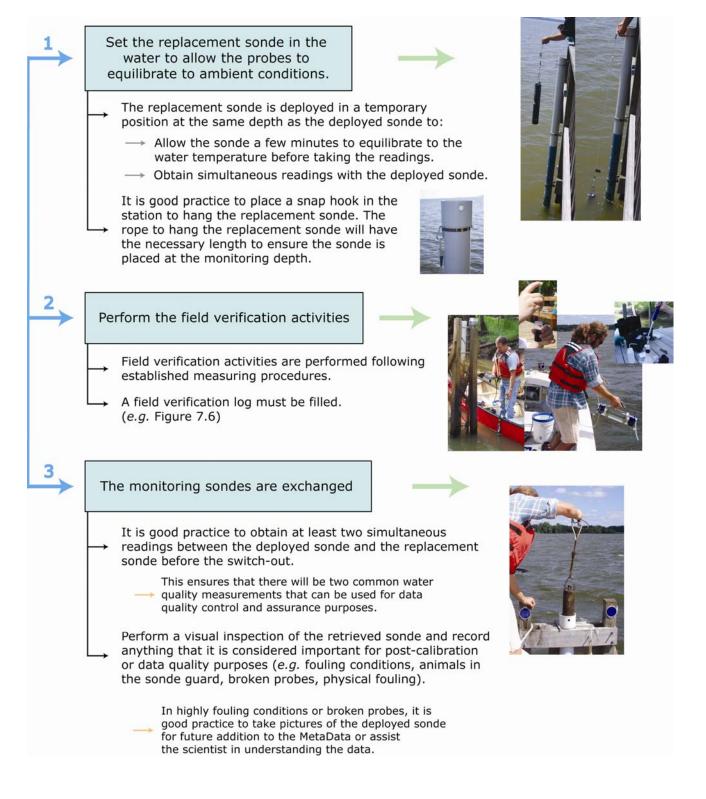
Figure 7.4 Multiprobe calibration log (Source: Texas Commission on Environmental Quality, 2003)

7.2.3 POST-DEPLOYMENT PERFORMANCE VERIFICATION

Sonde post-deployment performance verification should include: post-calibration or field performance assessment and field verification activities.

Post-calibration: activity done in a controlled laboratory environment after retrieval of the monitoring sensor. The sensor readings are compared to standard solutions to determine its performance. On-site post-calibration can be performed following the same procedures as laboratory calibrations.

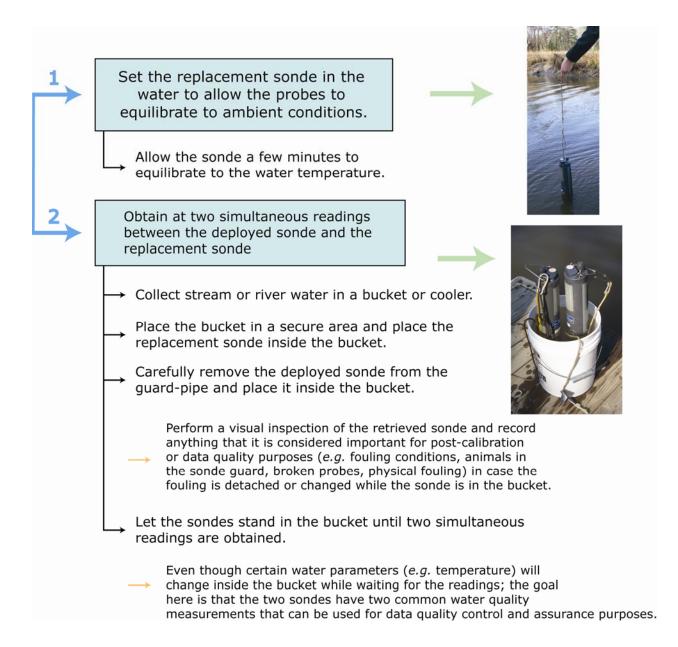
Field performance assessment: activity conducted in the field. As soon as the sensor is retrieved it is placed in a standard solution and readings are recorded.

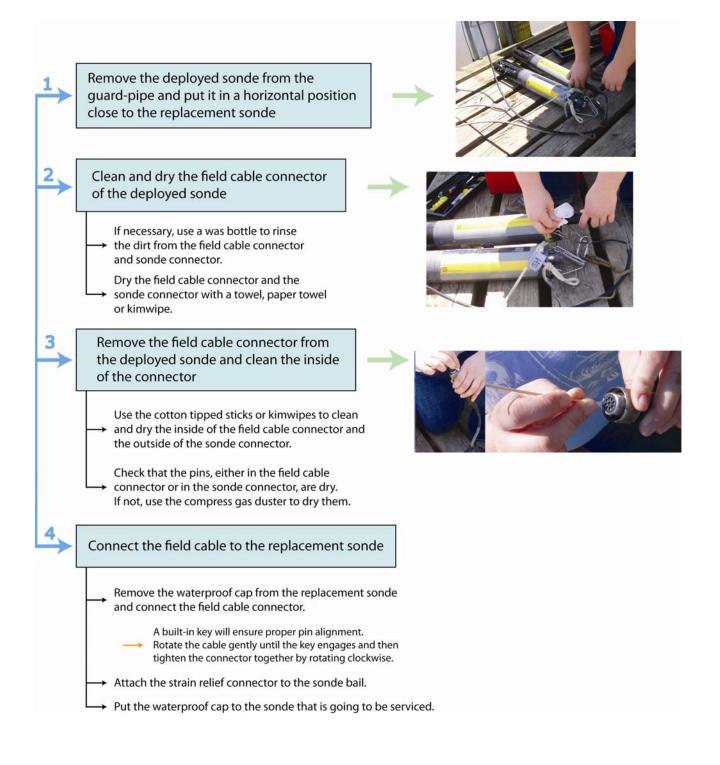

<u>Field verification</u>: indirect measurements of sonde performance. Using fieldmeasuring equipment, water quality measurements are taken and compared to sonde readings.

Probe performance records are used for continual improvement, data analysis and nonconformity management. As an example, a post-calibration log is presented in Figure 7.5.

DEPLOYMENT INFORMATION										
DATE	TIME	WEATHER	TIDE	WIND SPEED	HUMIDITY					
DEPLOYMENT:										
RETRIEVAL:										
DO mg/l	Water Temp	Air Temp	ORMATION Secchi Depth	Salinity	На					
DEPLOYMENT:										
RETRIEVAL:										
	PC	OST DEPLOYMENT D	DATA RETRIEVAL							
DATE OF DOWNLOAD: NAME OF *.dat FILE:										
TIME YSI STOP LOGGING:	TIME YSI STOP LOGGING: NAME OF *.txt FILE:									
POST DEPLOYMENT CALIBRATION										
DATE OF POST CALIBRATION:		Spcond								
Battery Volts:	_	pH 7	pH mV:		mV range (-50 <-> 50)					
Time Corrected: Y N		рН 10	pH mV:		Optimum 0 mV range (-230 <-> -140) Optimum -180					
Faster Slower Difference in seconds:		pH 4	pH mV:		mV range (130 <-> 230)					
Notes pH:					Optimum 180					
TURBIDITY 123	123 Rd WT Temp C sonde is reading in Rd WT: Corrected reading from Rd WT Table:									
DEPTH Barometric Pressure:	mm H	ig m	-	ate's pressure:						
% DO Theoretical %DO based on date's	s pressure:	DO % Rea	ding:	DO Membrane I	Puncture:					
Notes :					Y N					
CALIBRATION CONSTANTS Conduc	ctivity:	DO Gair	Range: 0.8 to 1.7	DO Charge:	Range: 25 to 75					
FOULING CONDITIONS										
Possible Fouling Description: Slime, Mud/Sediment (Bryozoan, Coral Lattice, Tunicates, etc.	(slimy, sticky, rusty, thick), Wo	rm tubes, Seaweed, Grasses, A	Algae, Amphipods, amphipod tubes	, Barnicles, Mussels, Branchi	ng Bryozoan, Encrusting					
TURBI			als of Physical Fouling Found in	Guard:						
Wipers Condition: Parked Y		Y N	E BODY:							
Fouled Y	N Y N	Y N SONDA								
THERMISTOR:		OPTICAL PROE	BE FACES:							
CONDUCTIVITY CHAMBERS:		pH BULB:								
DEPTH CHANNEL:										

Figure 7.5 YSI 6-series post-calibration log


During field verification, it is a good practice to take an independent measurement for each sensor parameter. Generally, field verification is performed during the monitoring sonde exchange phase. A possible sonde switch-out process could be:


For on stream & river bank platforms, a different method to obtain simultaneous readings between the replacement sonde and deployed sonde must be used if the station has only one guard-pipe. Possible reasons for using only one guard-pipe are:

- → The guard-pipe is placed where there is a small pooling of water or the sampling area is not big enough to accommodate two sondes.
- Due to high flow conditions, cost or maintenance issues it was decided to put only one guard-pipe.

If only one guard-pipe is used, a possible switch-out process could be:

For monitoring stations with telemetry capabilities, the following procedure is recommended to interchange the field cable connector between the deployed and the replacement sonde.

Chrospeake Bay National Extraction		WAT			MON	ITORING	DEPI	LOYMEN	IT AND F	RETR	IEV	AL LOG
Research Reserve in Virginia		Identifica	tion Numb	er	F	Revision		Effectiv	ve Date			Pages
		140111104						2.1004.1	0 2 4.0		F	Page 1 of 1
		•						-				
Field Locati	on					(Crew	/				
				DAT		GER INFO	RMA					
					YSH	D Number		Ti	me (EST)			
			nent (in	i)								
	R	etrieva	I (out)									
	Naatha	r Conditie	ne		WEA	THER INFO						
		d with Ke				Wind	Speed				Clou	ıd Cover
Current Wind Sp	beed (m	n/s)		_	0	0-1 (knots		0-1 (m/s)	0		ear (0-	
	1) 200				1	>1 - 10		1-5	1			partly Cloudy (10-50%
Air Temp (C)				-	2	>10 - 20		5-10	2			Broken (50-90%)
1 \ /					3	>20 - 30		<u>10-15</u> 15-21	3			it (>90%)
Relative Humidi	ty (%)			-	4	>30 - 40		15-21 21-26	4	Fo Ha	ggy	
					Э	> 40		21-20	5			o percentages)
Broo	initatio	on Type						Wind D	irection		Juu (n	io percentages)
10	None	лтуре		E	fr	East (90 deg)	willa D	S	- r	fr So	uth (180 deg)
10	Drizzle	<u>د</u>		ENE		fr East NE (67.5 deg)		SE		fr SE (135 deg)		
12	Light F			ESE		fr East SE (112.5 deg)		SSE		fr South SE (157.5 deg)		
13	Heavy			N	fr	fr North (0 deg)		/	SSW		fr South SW (202.5 deg)	
14	Squall			NE	fr NE (45 deg)			SW		fr SW (225 deg)		
15		n Precipita	tion	NNE	fr North NE (22.5 deg))	W	fr West (270 deg)			
16		Rain&Sno		NNW					WNW fr West NW (292.5			
·• 1				NW		NW (315 deg		- 3/	WSW			est SW (247.5 deg)
						TER INFOF						<u> </u>
Water a	nd Sec	chi Depth	6	Wa	ave Hei			Tidal Sta	200		VERI	FICATION SAMPLES
		ciii Depti	3	0		0 <0.1m		E	Ebb Tide			Chla Filter Volume
Water Depth (r	n)			1		0.1 <0.3m		F	Flood Tide			
				2		0.3 <0.6m		H	High Tide			
Secchi Depth (n	ר)			3		0.6 <1.0m	1	L	Low Tide			
If Secchi can be		00		4		1.0 <1.3m						
seen at the bottom	ו ו	SD >	VVD	5		>1.3m						
				·								
				WATE	R COL	UMN DEP	TH P	ROFILE				
Depth m	Tem	perature	S	pCond		Salinity	1	DO(%Sat)	DC)(mg/l)	pН
0.10						y	<u> </u>	- () ()		\	/	
0.10							+					
					_		_					
0.50												
0.75												
1.00												
1.25												
							_					
1.50							_					
1.75												
2.00												
2.25												
							+					
2.50												

Comments:

Note:

Two conditions that must be met when transporting multiparameter sondes to and from the monitoring sites are:

- The sondes must be transported in a saturated environment.
- The sondes must be transported in a container that minimizes shocks and vibrations.

Two commonly employed methods are:

 \rightarrow The sonde is transported wrapped up within a wet towel (CDMO, 2007).

- Soak a towel (large enough to wrap around the entire sonde) in tap water and wring out most of the water (check that it is wet; humid, not damp).
- Wrap the sonde in the towel, leaving some excess towel at the bottom of the sensor guard so it can be folded to ensure the guard is completely covered.
- Place the towel-wrapped sonde in a bucket, a cooler or other container for transportation to the monitoring site.
- It is good practice to transport the sondes in a container of sufficient size to allow the sondes to lie horizontally across the bottom.

 \rightarrow The sonde is transported in a 5-gallon bucket filled with tap water.

- Drill one or two holes on the lid about 3¹/₂ 4 inches in diameter.
- Place some type of cushion on the bottom of the bucket to minimize shocks and vibrations.
- If necessary, place some kind of weight on the bottom to prevent the bucket to tip over during transit due to the sonde's weight.
- Fill the bucket with tap water so that the probes stay submerged.
- Some kind of structure can be built to accommodate several buckets in a stable position during transit (in this case there is no need to place a weight inside the bucket).

7.3 STATION MAINTENANCE

The following activities must be included in the station maintenance program:

- Verification of station conditions during deploymentretrieval of monitoring sensors.
- Schedule on-site verification and cleaning of guard-pipes.
- Schedule retrieval of guard-pipes for cleaning and painting (once a year minimum).
- Schedule cleaning and rebuilding of monitoring platforms.
- Maintenance procedures and spare parts management.

IT IS A GOOD PRACTICE TO CLEAN THE INSIDE AND OUTSIDE OF THE GUARD-PIPE AFTER THE DEPLOYED SONDE IS RETRIEVED AND BEFORE THE NEWLY CALIBRATED SONDE IS DEPLOYED.

The guard pipe must be cleaned on a frequent basis to minimize the influence of biological fouling and to eliminate any physical fouling that could be interfering with the measurements.

Figure 7.7 Cleaning inside the guard-pipe

The best way to clean the inside of the guard-pipe is by using some kind of brush or mop. The brush can be purchased in any retail store or easily assembled. For example, a cleaning brush can be constructed using a 16 foot

Figure 7.8 Guard-pipe cleaning brushes

extension pole (Figure 7.7 and 7.8). To add extra cleaning power two scrub brushes can be bolted to the extension pole. Care must be taken when brushing the guard-pipe to minimize brushing off the antifouling paint. If cleaning is performed on a regular basis, minimum fouling will occur on the guard-pipe, therefore, a medium-soft brush will be enough to maintain the guardpipe in good condition.

To clean the outside of the guard-pipe, also a particular brush can be purchased in any retail store or easily assembled.

For example, Figure 7.8 displays a brush to clean the outside of the guard-pipe constructed by bolting two scrub brushes to a 8 inch long – half 6 inch PVC pipe.

In some situation a chimney sweep brush is a good option. Even though the brush is tough on the anti-fouling paint, many pipes stay in year after year and in these cases the anti-fouling paint is not an issue and a chimney brush works well to clear the pipe of hard and soft biological fouling.

In certain types of guard-pipe installations (*e.g.* on river or stream bank) it is a good practice after brushing the pipe to rinse it by pouring a bucket of surface water down the pipe.

NOTE: Any evidence of physical and biological fouling that could have affected the monitoring data must be recorded for further analysis.

7.4 TELEMETRY EQUIPMENT MAINTENANCE

Proper maintenance of the Telemetry equipment is essential to obtain accurate data. Equipment must be in good operating conditions, routine and schedule maintenance and inspection must be peformed..

must include at least the following activities

to ensure that your telemetry equipment is mounted far enough above sea level to be clear of wave action and storm surges due to hurricanes. Take out equipment (EPA 2002)

Battery: Campbell Scientific

Cyclic service life of rechargeable batteries

The industry definition of the "cyclic service life" of a battery is the period until it dorps to 60% of its rated capacity. For a 7 Ahr battery, this is when after repeated recharging, the battery can only deliver 4.2 Ahrs. When choosing a battery, you should also consider the number of recharge cycles you can expect from the battery until it reaches the end of tis cyclic life.

Several factors affect the cyclic service life, including ambient temp during charging and storage, number of discharge cycles, depth of discharge cycles and charging voltage. Clearly these are complex relationships.

The following may help you assess your batteries' service life:

1) temperature: warmer temperatures decrease life because heat hastens chemicals reaction that cause corrosion of the internal electroedes. The temperature effects are graphed and described on the following page.

Depth of discharge

Determine minimum and maximum battery voltages in your daily data. Analyze the data using tool to count the number of times the voltage dropped below certain values.

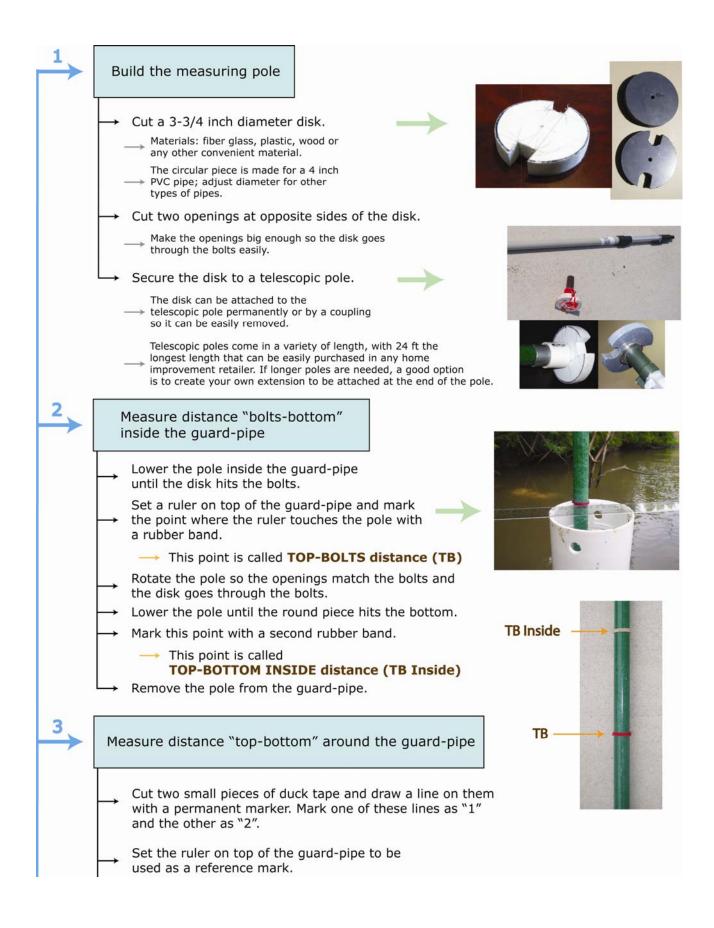
Check for more info http://www.mpoweruk.com/life.htm

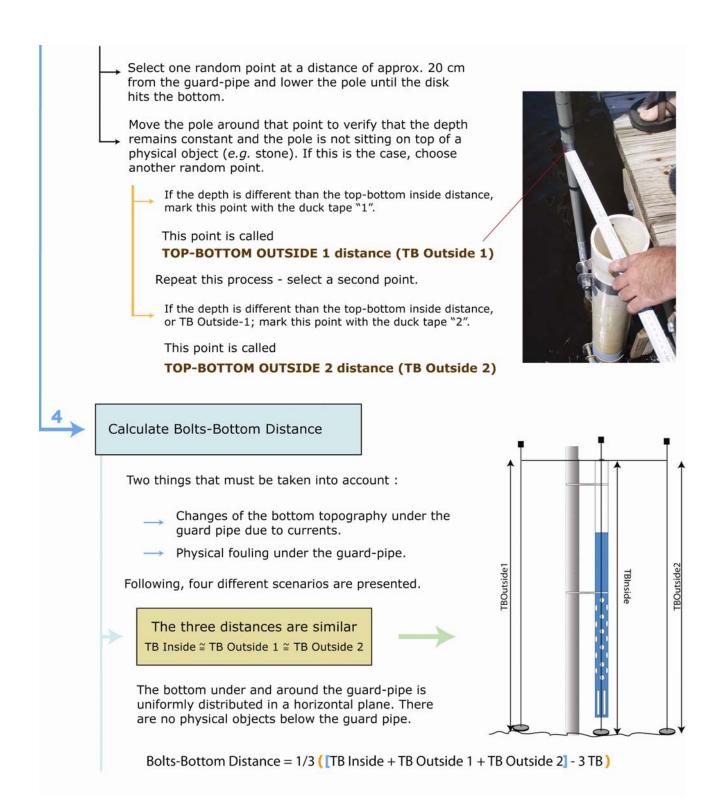
7.5 MEASURE THE DISTANCE FROM THE SONDE'S HOLDING BOLTS TO THE BOTTOM SEDIMENTS

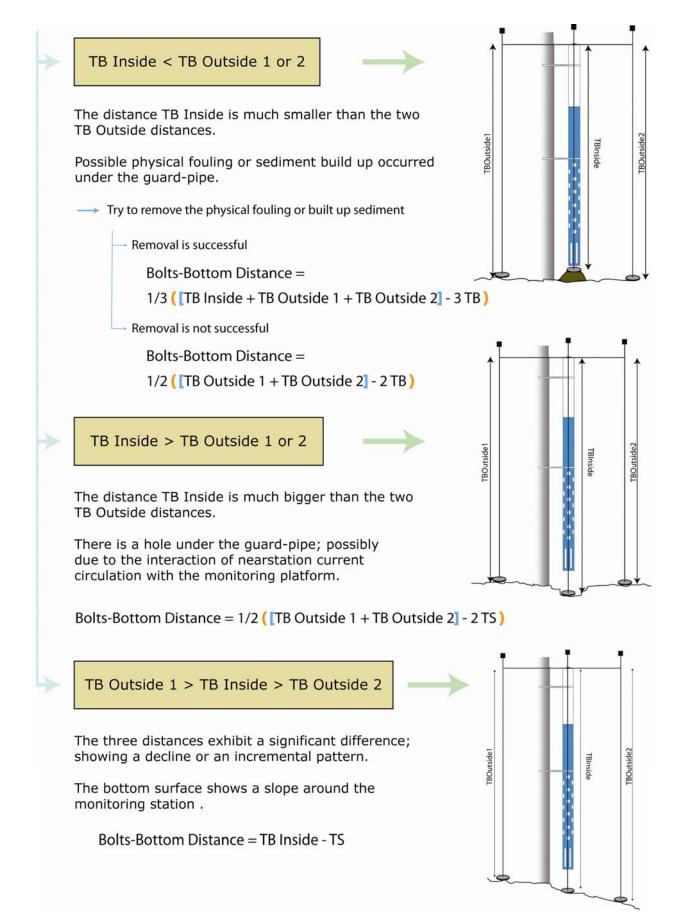
Water depth is one of the parameters measured by a monitoring sonde. A differential strain gauge transducer is generally employed to measure the pressure of the water column plus the atmospheric pressure above the water. To have an accurate water depth measurement, a program must be utilized to eliminate the errors produced by atmospheric pressure variations.

Water depth is the distance from the water surface to bottom sediments. The sonde measures water depth as the distance from the transducer to water surface; therefore to have an accurate water depth, the distance from the transducer to the bottom sediments must be added.

In a fixed structure monitoring platforms, the distance from the transducer to bottom sediments can be divided into two segments: the distance between the transducer and the bolts (where the monitoring sonde sits inside the guard-pipe) and the distance between the bolts and the bottoms sediments. The distance from the transducer to the bolts is fixed and known. The distance between the bolts and the bottom may vary; given the bottom can change over time.


In addition, verification measurements must be taken around the guard-pipe to check if physical fouling or different bottoms movements occurred under the guardpipe that would cause an inaccurate water depth measurement.


To determine the distance between the bolts and the bottom, a special tool is utilized (made with an aluminum


There are some environments that are more conducive to have bottom movements (*i.e.* deposition of sediments) than others; therefore the distance between the transducer to the bottom must be measured frequently.

telescoping extension pole and a disk with two opposite openings). Three measurements are taken, one inside the pipe and two outside the pipe. These three measurements are utilized to calculate the distance between the bolts and the bottom.

The procedure to determine the distance between the bolts and the bottom is shown in the following page.

7.6 CORRECTION FACTOR FOR WATER LEVEL/DEPTH DATA REPORTING

Austin *et al.* (2004) state that multiparameter sondes equipped with non-vented pressure sensors are most commonly used for continuous water quality monitoring. Standard calibration protocols for the non-vented sensor use ambient atmospheric pressure at the time of calibration. Changes in atmospheric pressure between calibrations appear as changes in water depth. A 1.0 millibar change in atmosphere pressure corresponds to an approximate 1.0 centimeter change in water depth. Therefore, use of a non-vented pressure sensor can result in significant water depth errors for large-scale weather and storm events. This error is eliminated for level sensors because they are vented to the atmosphere throughout the data sonde deployment time interval. If proper atmospheric pressure data is available, non-vented sensor depth measurements can be post-corrected for deployments between calibrations. This correction combined with a common reference point from a survey station, results in more accurate water depth data.

Austin *et. al.* demonstrate the relative ease of adjusting non-vented depth sensor data for atmospheric pressure changes to reflect more accurate measurements.

Ambient laboratory atmospheric pressure was measured using a Varila pressure sensor with data being stored at 15 minute intervals on a Campbell 10X datalogger. Following retrieval of the instrument from the field, data can be downloaded and saved as an Excel file. Atmospheric pressure data collected at the appropriate time interval and the atmospheric pressure at the time of calibration can be added to the Excel file.

The raw depth data is adjusted by the following simplistic equation:

$$Depth_{adjusted} = Depth_{YSIraw} + \frac{(atm. \ pressure_{calibration} - atm. \ pressure_{ambient})}{100}$$

In many cases, adjustment of the raw data can correct depth levels to positive values, which can result in more accurate and less confusing information (Figure 7.8, Table 7.4).

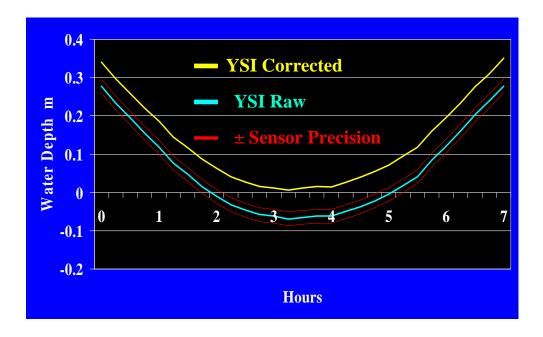


Figure 7.9 Raw vs. corrected YSI depth data from the York River over time (accuracy +/- 0.018 m)

Time	Raw Depth	Adjusted Depth	Ambient Pressure	Calibration Pressure
05:00	1.66	1.72	1014.8	1020.30
05:15	1.64	1.69	1014.8	1020.30
05:30	1.62	1.68	1014.9	1020.30
05:45	1.61	1.67	1014.4	1020.30
06:00	1.61	1.67	1013.9	1020.30
06:15	1.59	1.66	1014.0	1020.30
06:30	1.59	1.66	1013.4	1020.30
006:45	1.60	1.67	1013.1	1020.30
07:00	1.60	1.68	1013.0	1020.30

Table 7.4 Example of raw depth data using atmospheric pressure at time of calibration vs. adjusted data using ambient atmospheric pressure from weather station.

Additionally, extreme storm events, such as hurricanes, are marked by large depression in atmospheric pressure during the storm's passage. For example, in the case of Hurricane Isabel, a 30 millibar drop was observed resulting in a 0.30 m error in water depth level.

Given atmospheric pressure data at the time of instrument calibration and during instrument deployment, water depths are easily corrected (Figure 7.9).

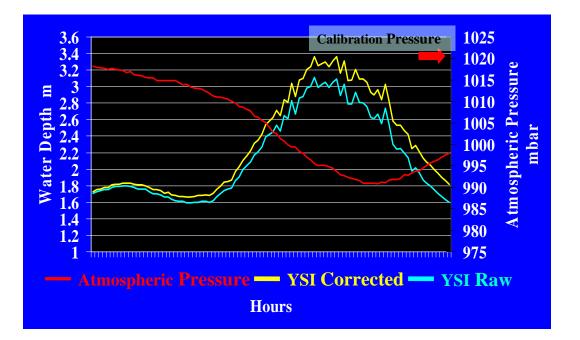


Figure 7.10 Raw vs. corrected YSI depth data using atmospheric pressure at time of Hurricane Isabel.

To further enhance the value of water level data, traditional optic or advanced GPS surveying systems can be used to reference water quality monitoring platforms in instruments to a standard vertical datum. Common local datums include mean sea level (MSL), mean lower low water (MLLW), and mean higher high water (MMHW).

Increase accuracy and value of water depth data can be realized by correcting for atmospheric pressure changes during the deployment period and reporting the data to a common vertical reference datum. Benefits of more accurate and vertically referenced water level data can facilitate AQ/QC efforts by removing erroneous negative values while providing water level information in a more user acceptable format, thereby increasing the use of water level data by a broader audience.

7.7 EQUIPMENT MAINTENANCE

As stated in ISO 9001:2600

The organization shall determine the monitoring and measurement to be undertaken and the monitoring and measuring devices needed to provide evidence of conformity of product to determined requirements.

The organization shall establish processes to ensure that monitoring and measurement can be carried out and are carried out in a manner that is consistent with the monitoring and measurement requirements.

Where necessary to ensure valid results, measuring equipment shall:

- a. be calibrated or verified at specified intervals or prior to use, against measurement standards traceable to international or national measurement standards; where no such standards exist, the basis used for calibration or verification shall be recorded;
- b. be adjusted or re-adjusted as necessary;
- c. be identified to enable calibration status to be determined;
- *d.* be safeguarded from adjustments that would invalidate the measurement result;
- *e.* be protected from damage and deterioration during handling, maintenance and storage.

All the equipment used to calibrate and post-calibrate the sensors and field verifications must be maintained, calibrated or pass some quality assurance check to ensure their accuracy and that they perform to accepted standards.

Equipment histories, records and logs must be maintained.

7.8 REFERENCE

ANSI/ISO/ASQ Q9001-2000. **Quality management systems - Requirements**. American Society for Quality

Austin Joy, Terri Keffert, Jim Goings and William Reay. 2004. **Enhancing the Value of SWMP Depth Data**. Poster presented at the inauguration of the Catlett-Burress Research and Education Teaching Lab.

CDMO. 2007. **YSI 6-Series Multi-Parameter Water Quality Monitoring Standard Operating Procedure. Version 4.1** National Estuarine Research Reserve System-Wide Monitoring Program (SWMP).

Helsel D.R. and R.M. Hirsch. 2002. **Statistical Methods in Water Resources**. U.S. GEOLOGICAL SURVEY

Resources Inventory Committee. 1999. **Automated water quality monitoring: Field manual**. Ministry of environmental lands and parks. The Pro. of British Columbia.

Sullivan, G.P., R. Pugh, A.P. Melendez and W.D. Hunt. 2004. **Operations & Maintenance Best Practices: A Guide to Achieving Operation Efficiency**. US Department of Energy.

Texas Commission on Environmental Quality. 2003. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment and Tissue. Monitoring Operations Division.

U.S. Department of Energy. **Operations and Maintenance**. Energy Efficiency and Renewable Energy. Federal Energy Management Program. <u>http://www1.eere.energy.gov/femp/operations_maintenance/om_strategies.html</u>

U.S. Environmental Protection Agency.2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8.

U.S. Environmental Protection Agency.2002. **Guidance for Quality Assurance Project Plans**. EPA QA/G-5

YSI Incorporated. 2008. 6-Series - Multiparameter - Water Quality Sondes - User Manual.

YSI Incorporated. 2009. Calibration Tips for YSI 6-Series Sondes & Sensors.