Nature-Based Features for Coastal Resilience: Quantifying Wave Dissipation

Presented By: Maura K. Boswell, P.E. Old Dominion University, Ph.D. Candidate Virginia Sea Grant Research Fellow

Dissertation Advisor: Navid Tahvildari, Ph.D.

Background

- Living shorelines are the preferred method
- Minimal post-construction study
- Engineering design guidance is lacking
- Cross-disciplinary success

How do living shorelines work?

Marsh Sill

How do living shorelines work?

Oyster Castle

Locations

Captain Sinclair Marsh Sill

- Eroding marsh
- Constructed in 2016
- 4 rock sills, sand fill, vegetation

Captain Sinclair Marsh Sill

Low Tide

High Tide

Bayford Oyster Castle Project

- Eroding marsh
- Constructed in 2014
- 756 feet of oyster castle array

Bayford Oyster Castle Project

Low Tide

High Tide

Data Collection

Captain Sinclair

Bayford

Next Steps

- Finish data post-processing
- Quantify wave dissipation
- Numerical modeling for optimization

Acknowledgments

- Virginia Sea Grant
- Virginia Institute of Marine Science
 - Center for Coastal Resources Management
 - Shoreline Studies Program