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Abstract

In the wake of recent large-scale observational programs such as Joint Global Ocean Flux Study (JGOFS) and Global

Ocean Ecosystems Dynamics (GLOBEC), a number of models have been developed to simulate biogeochemical cycling in

various oceanographic regions; however, few quantitative comparisons of these models have been made. In order to assess

critically which ecosystem structures and model formulations are best able to simulate observed biogeochemical cycling,

three fundamentally different ecosystem models of varying complexity are applied within a consistent one-dimensional (1-

D) framework at 15.51N, 61.51E in the Arabian Sea. Each model is forced by three different sets of physical forcing fields:

two of these are derived from the solutions of different 3-D physical models, while the third is derived from moored

observations. In situ concentrations of plankton and nitrogenous nutrients, and rates of production and export measured

during the US JGOFS Arabian Sea Expedition are used for assimilation and evaluation. After objectively optimizing each

model, their performance is quantitatively compared to assess which model structure best represents the fundamental

underlying biogeochemical processes. Results are highly sensitive to the number of parameters optimized for each

ecosystem model. A set of cross-validation experiments designed to assess predictive capability demonstrates that when too

many parameters are allowed to vary, the more complex models are unable to reproduce any unassimilated data,

suggesting that under these conditions the models have little predictive skill. Optimizing only an objectively and

systematically selected subset of uncorrelated model parameters minimizes this problem. The method developed to

accomplish this parameter selection is presented. After this optimization method is applied, all three models behave

similarly, implying that the additional complexity of a multiple size-class model may not be advantageous. Furthermore, a

change in physical model (mixed-layer depth and vertical velocity fields) typically produces a far greater change in

biogeochemical model response than does a change in ecosystem model complexity, highlighting the fact that

biogeochemical variability is largely determined by the physical environment both in situ and in the model domain.
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1. Introduction

An important legacy of the US Joint Global
Ocean Flux Study (JGOFS) Synthesis and Model-
ing Project will be the formulation of a broad suite
of models designed to simulate biogeochemical
cycling at the various process and time-series study
sites. These models vary from the simplest four to
five state variable models (e.g., Denman and Pena,
2002; Schartau and Oschlies, 2003; Kantha, 2004) to
extremely complex 20 to 30+ state variable, multi-
nutrient models (e.g., Bissett et al., 1999; Moore et
al., 2002; Gregg et al., 2003). Although each of these
modeling studies has advanced our understanding
of biogeochemical cycling within the open ocean,
few quantitative comparisons of these models have
been made. Generally these models use distinct
forcing fields, and their performance is evaluated
using different criteria (Arhonditsis and Brett,
2004). As a result, it is difficult to examine critically
which ecosystem structures and formulations are
most successful in a specific region, and how much
complexity is required to simulate accurately major
observed biogeochemical cycles. Although current
dogma dictates that the simplest single size-class
ecosystem models cannot adequately explain the
plethora of biogeochemical observations produced
by programs such as JGOFS, it has not been
demonstrated that models of greater complexity will
inherently produce the best estimates of bulk
biogeochemical quantities and fluxes, or that they
will exhibit greater predictive ability. This is because
the number of parameters that must be specified
from observations increases by as much as the
square of the number of state variables, and quickly
surpasses our ability to constrain them properly
from observations (Denman, 2003).

Objectively assessing the performance of marine
ecosystem models characterized by varying levels of
complexity is not a straightforward task (Arhondit-
sis and Brett, 2004). First, the models must be
forced with identical physical fields, and second, the
models must be evaluated using the same biogeo-
chemical data. Even assuming these criteria are
accomplished, because model performance is largely
a function of time spent tuning unconstrained
parameters, it is often unclear whether a given
model reproduces a given data set because of the
specific structural characteristics of the model or
because more time has been spent tuning the model
to a particular data set. Furthermore, models
including additional state variables, i.e. more func-
tional groups, size classes, micro-nutrients, etc.,
inherently contain more unconstrained parameters
that require a more comprehensive observational
database to uniquely characterize this greater
complexity. With more degrees of freedom, it is
possible that a highly complex model will reproduce
a data set better than its simpler counterpart;
however, a model that is better able to reproduce
a given data set does not necessarily have a greater
predictive ability.

One method of objectively comparing the perfor-
mance of models of varying complexity is to invoke
formal data assimilation and parameter optimiza-
tion techniques. A number of successful ecosystem
modeling studies have recently applied the varia-
tional adjoint method to marine ecosystem model-
ing analyses (McGillicuddy et al., 1998; Spitz et al.,
2001; Vallino, 2000; Friedrichs, 2001; Schartau et
al., 2001; Fennel et al., 2001; Friedrichs, 2002). In its
simplest form, the variational adjoint method is a
particularly efficient method that approximates a
nonlinear weighted least-squares analysis in which
the misfit between the model solution and the
observations is minimized and an optimal model
parameter set is recovered. This method is particu-
larly well suited for marine ecosystem models, which
all inherently contain large numbers of poorly
known parameters governing processes such as
plankton growth, mortality, nutrient uptake, and
remineralization. By applying this data assimilation
technique to models of varying complexity, it is
possible to minimize the inherently confounding
problems associated with subjective tuning.

The 1-D model comparison effort described here
is conducted at a site within the Arabian Sea. The
Arabian Sea is an excellent location to test a variety
of ecosystem models because the region experiences
seasonal extremes in forcing and biological response
that alternate from calm, stratified, near-
oligotrophic conditions during the Intermonsoon
periods (March–May and October–November) to
strongly forced, eutrophic conditions during the
Southwest (June–September) and Northeast (No-
vember–February) monsoons (Smith et al., 1998).
The two monsoons themselves generate distinctly
different biological responses. During the Southwest
Monsoon (SWM), coastal upwelling produces high
biological production with chlorophyll-rich fila-
ments extending several hundred kilometers off the
Omani coast (Gundersen et al., 1998; Manghnani et
al., 1998; Lee et al., 2000). In contrast, during the
Northeast Monsoon (NEM) convectively driven
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nutrient entrainment enhances offshore production
(Lee et al., 2000; Wiggert et al., 2000). Thus the
Arabian Sea provides a demanding test for ecosys-
tem models, since they must be able to capture the
full gamut of pelagic ecosystem behavior and
respond appropriately to dramatic seasonal varia-
tions in light levels and nutrient supply.

The JGOFS Arabian Sea Process Study data set
is arguably the most comprehensive of all the
JGOFS regional data sets. The analysis presented
here utilizes biogeochemical observations from
station S7 (161N, 621E). These data were collected
on six different cruises throughout 1995 that cover
all four monsoon/intermonsoon periods (Smith et
al., 1998). This analysis also makes use of particle
flux time series measured at a nearby sediment trap
(MS-4, 161N, 61.51E, Honjo et al., 1999). In
addition, as part of a companion effort sponsored
by ONR, a mooring (henceforth referred to as the
‘WHOI mooring’) was placed at 15.51N, 61.51E,
80 km southwest of S7 (Weller et al., 1998). Its
instrumentation provides the simultaneous surface
irradiance and in situ temperature time series
required as physical forcing fields for the ecosystem
models. Finally, solutions from multiple basin-scale
physical models are available for this region, which
provide estimates of mixed-layer depth and vertical
velocity.

This study compares the nine modeling realiza-
tions that arise through the utilization of three
different sets of physical forcing fields and three
ecosystem models of varying complexity.

2. Methods

2.1. Ecosystem models

In this analysis, simulations from three different
ecosystem models are compared. Each of these
models is well documented in the literature, and
therefore only their general characteristics and
appropriate references are provided.

The simplest model, EM4, is a four-component
(phytoplankton, zooplankton, dissolved inorganic
nitrogen (DIN) and detritus) ecosystem model that
represents a classic diatom–mesozooplankton sys-
tem. Unlike the other two models, EM4 has been
developed and calibrated specifically for the Ara-
bian Sea (McCreary et al., 1996, 2001; Hood et al.,
2003).

The second model, EM5, is a five-component
(phytoplankton, heterotrophs, DIN, dissolved or-
ganic nitrogen (DON) and detritus) ecosystem
model developed by Hood et al. (2001) for use at
the Bermuda Atlantic Time Series station (BATS)
and subsequently applied over the tropical and
subtropical Atlantic (Hood et al., 2004; Coles et al.,
2004). Although this model was originally devel-
oped with a sixth diazotrophic state variable, here
the model is implemented without this component.
The heterotroph compartment is considered to
represent the sum of all heterotrophic processes
that are facilitated by bacteria, microzooplankton
and mesozooplankton. This model emphasizes the
microbial loop by having all organic matter cycle
through the heterotroph compartment at relatively
high rates.

The most complex ecosystem model applied here,
EM8, is an eight-component model containing two
size classes of phytoplankton, zooplankton and
detritus, as well as ammonium and nitrate. This
model was originally developed for use in the
equatorial Pacific (Christian et al., 2002), but has
more recently been adapted for use in the Indian
Ocean (Wiggert et al., 2006). In this study the
original version of the model is used with one
exception: in order to simplify the model compar-
ison, the iron model component is turned off. With
the multiple plankton size classes included in this
model, EM8 can be basically thought of as a
combination of EM4 and EM5.

2.2. Physical forcing fields

Time series of photosynthetically active radiation
(PAR), temperature, vertical diffusivity, vertical
velocity and mixed-layer depth (MLD) are required
to run the 1-D ecosystem models. Identical PAR,
temperature and vertical diffusivity time series were
used for all model runs. PAR and temperature time
series were obtained from the Weller mooring data
(Weller et al., 1998; McCreary et al., 2001). Vertical
diffusivity was computed using the velocity and
temperature data from the WHOI mooring (Paca-
nowski and Philander, 1981).

The ecosystem models also were forced by three
different sets of mixed-layer depth and vertical
velocity time series. The Forcing 1 (F1) MLD and
vertical velocity were derived from WHOI mooring
data. Daily averaged MLD was estimated as the
depth at which temperature is 1.0 1C lower than the
near-surface temperature (Dickey et al., 1998;
McCreary et al., 2001). Below the bottom of the
mixed layer, vertical velocities were estimated from
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Fig. 1. (A) Time series of MLD obtained from mooring data

(F1), the McCreary et al. (2001) model (F2) and the Murtugudde

and Busalacchi (1998) model (F3). Black diamonds represent the

times of the six JGOFS Arabian Sea Process Study cruises. The

black bar on the upper x-axis represents the time period of the

time series shown in (B). (B) As in (A), but zoomed in to illustrate

the detail surrounding the ttn-050 cruise (black diamond on x-

axis). Two additional time series (F4 and F5) are shown here for

comparison (see text of Section 4.2).
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biweekly averaged isotherm displacements; within
the mixed layer vertical velocity was set to zero.

The Forcing 2 (F2) MLD and vertical velocity
time series were derived from a reduced-gravity
circulation model (McCreary et al., 2001). This
model consists of four active layers (the surface
mixed layer, the diurnal thermocline, the seasonal
thermocline and the main thermocline) overlying a
quiescent, deep ocean where pressure gradients are
assumed to vanish. In this model the mixed-layer
thickness is determined using a Kraus–Turner
mixed-layer model (Kraus and Turner, 1967) that
considers the effects of both buoyancy mixing and
wind-induced shear instability. From October 1994
through October 1995, daily mean data from the
WHOI mooring are blended into the forcing fields.
In addition, diurnal variability is introduced by
allowing incoming solar radiation to have a realistic
diurnal cycle.

The Forcing 3 (F3) MLD and vertical velocity
time series were obtained from a reduced-gravity,
primitive equation ocean model (Murtugudde et al.,
1996; Murtugudde and Busalacchi, 1998) with a
variable depth mixed layer overlying 19 sigma
layers. In this model mixed-layer thickness is
determined using a ‘‘hybrid’’ mixed-layer model
(Chen et al., 1994) that considers both wind stirring
and shear instability. The thickness of each of the
remaining 19 layers is a constant fraction of the
total vertical distance between the base of the mixed
layer and bottom of the model domain. Thus
whereas the F3 fields were derived from a model
with relatively high vertical resolution, the F2 fields
were derived from a model with relatively high
temporal resolution that resolves the diurnal cycle.

The F1–F3 MLD time series all show similar
trends throughout 1994–1995 (Fig. 1): a pro-
nounced deepening of the MLD during the winter
NEM and the summer SWM, and shallow MLDs
during the Intermonsoonal periods. The F1 and F3
MLDs, however, diverge in November 1994 and
July/August 1995, with F3 producing significantly
deeper MLDs in both instances. The F2 MLDs are
closer to the mooring-derived estimates, which is
due to a combination of tuning (Hood et al., 2003)
and the application of mooring-derived surface
forcing data. These two time-periods were domi-
nated by prominent mesoscale eddy activity (Dickey
et al., 1998; Fischer et al., 2002), which caused the
mixed layer in this region to shoal significantly.
Neither of the physical models used in this study
have the ability to capture physical perturbations
associated with these mesoscale events, which may
account for these discrepancies.

2.3. Model implementation

The ecosystem models are all solved using a
second-order Runge–Kutta scheme. Vertical advec-
tion is computed using a simple centered, finite-
difference, gradient-form advection scheme and
vertical diffusion is applied using a Crank–Nicholson
vertically variable diffusion operation, with a closed
upper boundary and an open bottom boundary. The
effect of the horizontal advection of biological
quantities was examined through a scaling analysis
using output from two 3-D coupled biological–
physical models (Hood et al., 2003; Wiggert et al.,
2006). In this region, horizontal advection was found
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to be small in comparison to vertical advection and
other biological source/sink terms, and was thus
neglected.

At each time step, all state variables are mixed
down to the bottom of the mixed layer. A modified
second-order flux-corrected transport scheme is
applied to calculate detrital sinking. A uniform
sinking velocity of 32mday�1 is applied to all
detrital components with the exception of the small
detritus component of EM8, which sinks at a much
slower 0.3mday�1. The subsurface light field is
computed using the method of Anderson (1993): the
water column is divided into three layers, and
vertical attenuation coefficients for each layer are
determined from a fifth-order polynomial fit. The
attenuation coefficients are proportional to the
square root of the average pigment in each layer
(Friedrichs and Hofmann, 2001.) The models are
run from 1 October 1994 through 1 January 1996
with a time step of 1 h and a depth resolution of
10m.

2.4. Biogeochemical data

Five distinct data types are assimilated into the
ecosystem models: phytoplankton chlorophyll, zoo-
plankton biomass, DIN, primary production, and
export flux. Data from six Arabian Sea Process
Study cruises were downloaded from the US JGOFS
website: http://usjgofs.whoi.edu/jg/dir/jgofs/arabian.
These data cover each season of 1995: mid-NEM
(ttn-043: 1/8–1/31); Spring Intermonsoon (ttn-045:
3/14–4/7); mid-SWM (ttn-049: 7/18–8/12); late
SWM (ttn-050: 8/18–9/12); Fall Intermonsoon (ttn-
053: 10/29–11/25); and early NEM (ttn-054: 11/
30–12/26). For each cruise, only data from
Station S7 (16.01N, 62.01W) are utilized; note,
however, that for each data type, observations are
not necessarily available from each cruise. In
addition to cruise data, particulate nitrogen export
flux measurements are utilized from the 800m
sediment trap located at 16.01N, 61.51W (Honjo
et al., 1999).

Chlorophyll-a (measured fluorometrically) and
primary production data (24-h in situ incubations)
are available at S7 for five of the six cruises
(Barber et al., 2001). Total zooplankton carbon
(4200 mm) data were collected using a double
1m2 multiple opening–closing net system (MOC-
NESS) for four of the six cruises (Wishner et al.,
1998). For comparison with the nitrogen-
based model simulations, a C:N conversion factor
of 6.625 was assumed. Total DIN data (NO3+N-
O2+NH4) were computed from data for all six
cruises (Morrison et al., 1998). When multiple
nutrient profiles were available for the same day,
these were averaged prior to assimilation. All data
were also interpolated to the model grid, starting at
15m for zooplankton and 5m for chlorophyll and
nutrients.

In initial experiments in which DIN data were
assimilated over the entire model domain (0–150m),
unreasonable optimized ecosystem parameter esti-
mates were obtained. This outcome was a direct
result of the assimilation attempting to compensate
for the physical models’ inability to capture the
sharp nutricline because of their overestimated
mixing and diffusion. Thus only mixed-layer DIN
concentrations were assimilated so the biogeochem-
ical assimilation scheme would not attempt to
compensate for this physics-specific shortcoming.
The remaining cruise data (primary production,
chlorophyll and zooplankton concentrations) were
assimilated over the full depth to which data were
available.

2.5. Variational adjoint method

The variational adjoint method of data assimila-
tion is used to determine the optimal ecosystem
parameter values, such that the differences between
the model solution and the observations are
minimized. This method consists of: (1) a numerical
model; (2) a measure of the misfit between the
predicted and observed variables (i.e. the cost
function); (3) an adjoint, or backwards model,
which is used to compute the gradient of the cost
function with respect to the subset of model
parameters that will be adjusted, also called the
model control variables; and (4) an optimization
procedure that uses this information to determine
the direction and amount by which the control
variables must be modified in order to minimize the
cost function.

After initial estimates of the control variables are
made, the numerical model is run in order to obtain
a value of the cost function. The technique
developed by Lawson et al. (1995) is used to
construct the adjoint code directly from the model
code by means of Lagrange multipliers. The adjoint
of the model is then run backward in time to find
the gradient of the cost function with respect to the
model control variables. Values of these gradients
are passed to a variable-storage quasi-Newton

http://usjgofs.whoi.edu/jg/dir/jgofs/arabian
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optimization procedure (Gilbert and Lemarechal,
1989), which computes the optimal direction
towards the minimum of the cost function, and
the optimal step size in that direction. New values of
the control variables closer to the minimum of the
cost function are found, and the model is rerun.
This procedure is carried out in an iterative manner
until a specified convergence criterion, generally
based on the norm of the gradient of the cost
function, has been satisfied. Uncertainties in the
recovered values of the model control variables are
computed from a finite difference approximation of
the Hessian matrix, i.e. the matrix of the second
derivatives of the cost function with respect to the
control variables. When computed at the minimum
of the cost function, the inverse of the Hessian
matrix can be used to estimate not only the errors
for the optimal parameter estimates, but also
parameter correlations and the sensitivities of the
cost function to each parameter (Tziperman and
Thacker, 1989; Matear, 1995).

2.5.1. Cost function

The general cost function, J, is a measure of the
misfit between the predicted variables (aij) and the
observed variables (âij), and can be expressed as a
weighted sum of squares:

J ¼
1

N

XM

i¼1

XT

j¼1

W 2
ijðaij � âijÞ

2.

The sums are carried out over the number (T) of
time-steps as well as the number of variables
(M ¼ 5) for which observations are available: the
rate of primary production, phytoplankton chlor-
ophyll, zooplankton biomass, DIN, and sediment
trap export flux. The normalization factor ðN ¼
180Þ represents the total number of observations
assimilated.

In this formulation, the weights (Wij) are defined
to be inversely proportional to the measurement
uncertainty. These uncertainties must include not
only the accuracy of the observations, but also the
confidence we have that our modeled quantities
truly represent the data. In order to lessen the
subjectivity and difficulties associated with indivi-
dually assigning these uncertainties to each type of
measurement, a reasonable alternative is to define
the uncertainty in all cases to be proportional to the
range of observational variability. Specifically, in
each case, the measurement uncertainty is chosen to
be 25% of the standard deviations (si) of the
observations:

W ij ¼
4Cij

si

,

where s ¼ 18mg Cm�3 d�1 for primary production,
s ¼ 0.22mg chlm�3 for phytoplankton chlorophyll,
s ¼ 0.4mmol Cm�3 for zooplankton biomass,
s ¼ 2.4mmol Nm�3 for DIN, and s ¼ 1.4mg
Nm�2 d�1 for sediment trap export flux. The
constant scaling factor (4) is included in order to
ensure that the magnitudes of the weights are
reasonably representative of the uncertainties asso-
ciated with the observations, and has no effect on
the intercomparison of different J values. Cij acts as
a data availability switch: if data are available
Cij ¼ 1, if not Cij ¼ 0. Thus the values Wij

�1

roughly represent a significance threshold for the
magnitude of aij � âij. Defined in this way, two
values of J are not significantly different if they vary
by less than one.

As expected, the magnitudes of the cost functions
are very sensitive to the choice of weights. However,
the relative magnitudes of the post-assimilation cost
functions obtained for the various models studied
here were generally independent of our choice of
weights. For example, experiments using a 50%
lower weight for zooplankton resulted in very little
change in the relative performance of our models.

Experiments also were conducted to examine the
effect of imposing upper and lower bounds on the
range of allowed parameter values as penalty terms
in the cost function equation. These experiments
revealed that such penalties resulted in the opti-
mized parameter values either being unaffected by
the restriction (if the weight given to that penalty
was low) or obtaining the maximum or minimum
value of that range (if the weight given to that
penalty was high). As a result of this behavior, and
in order to ensure a maximum degree of freedom in
the model control variables, the penalty terms in the
cost function were removed and were not included
in any of the results described in the following
section. Unrealistic parameter values were not
obtained in any of our final model runs, which we
attribute to the careful selection of the model
control variables.

2.5.2. Predictive cost function

Although the cost function is a useful tool for
examining model-data misfit for a particular data
set, data assimilative models additionally need to be
validated against independent, unassimilated data.
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Here cross-validation experiments are carried out in
which three seasons of data are assimilated, and the
resulting parameter estimates are used to determine
the misfit (cost function, J) for the remaining season
of data. This experiment is conducted four times,
where each time a different season of data is
withheld. The resulting four individual cost func-
tions (all computed using a normalization factor of
N ¼ 180) are summed to obtain one overall cost
function, which is defined as the ‘predictive cost
function’, or JP. Thus whereas J represents how well
a model reproduces a given data set, JP reveals how
well a model reproduces unassimilated data. In this
analysis, this is interpreted as a measure of a given
model’s predictive ability.

2.5.3. Assimilation experiments

Two assimilation experiments are conducted with
each of the nine combinations afforded by the three
ecosystem models (EM4, EM5, EM8) and the
three physical forcing fields (F1–F3). In Experiment
1, all ecosystem model parameters are optimized for
each model. This consists of 10 parameters for
EM4, 16 parameters for EM5, and 19 parameters
for EM8. The resulting values of J and JP are
computed.

In Experiment 2, only an objectively and system-
atically chosen subset of parameters is optimized for
each of the nine modeling realizations. Beginning
with the results from Experiment 1 where all
parameters are optimized, the sensitivities of the
cost functions to each model parameter and the
correlations between each pair of parameters are
computed from the inverse of the Hessian matrix
(Matear, 1995.) The parameter to which the cost
function is least sensitive, or in other words the
optimized parameter with the greatest normalized
uncertainty, is then fixed to its original value, and
another assimilation simulation is conducted with
one fewer control variables. After again computing
J, JP and the corresponding Hessian matrix, the
parameter to which the cost function is least
sensitive is again held fixed, and another assimila-
tion simulation is conducted with one fewer control
variables. This process is continued until there are
no remaining control variables. The resulting values
of J and JP are examined, and the ‘optimal’
simulation used for Experiment 2 is determined to
be the simulation characterized by the minimum
value of JP. This technique provides an objective
method for determining an optimized parameter
subset that maximizes predictive ability by
sequentially removing the optimized parameters
that are associated with the greatest uncertainties.
In addition, by default this method sequentially
removes parameters that are highly correlated
to other optimized parameters. Thus in each case
the optimized parameter subset consists of a
relatively uncorrelated (typically having correlation
coefficients less than 0.8) set of parameters to which
the cost function is most sensitive. Note that
although the minimum value of J will correspond
to the maximum number of control variables for a
given model, the minimum value of JP will
correspond to a much smaller number of control
variables, and will depend not only on the specific
ecosystem model chosen, but also on the forcing
field used.

3. Results

3.1. No assimilation

Initial simulated distributions of phytoplankton
chlorophyll (Fig. 2) and zooplankton biomass
(Fig. 3) obtained from the nine model combinations
(EM4, EM5, EM8 combined with F1–F3) indicate
that prior to assimilation, the results are more
sensitive to the choice of ecosystem model than the
choice of physical forcing. For example, indepen-
dent of which forcing fields are applied, chlorophyll
distributions obtained using EM4 generally show
low concentrations throughout the study period,
with only a few short-lived (less than 3 weeks)
blooms associated with the shoaling of the mixed-
layer at the end of the NEM and the SWM. In
contrast, chlorophyll distributions obtained with
EM5 show relatively high concentrations through-
out 1995, with blooms typically lasting 2 months or
longer. EM8 produces chlorophyll concentrations
similar to those of EM5; however, the EM8 blooms
are less persistent, typically lasting only 1–3 weeks.
Deep-chlorophyll maxima are produced by both
EM5 and EM8 during the Spring Intermonsoon,
again independent of which physical forcing fields
are used, while for EM4 deep chlorophyll maxima
never appear.

Given the low chlorophyll concentrations pro-
duced by EM4, it is not surprising to see that EM4
also produces consistently low concentrations of
zooplankton biomass (Fig. 3). These low concentra-
tions (generally less than 0.8mmolCm�3) are in
contrast to those produced by EM5, which typically
exceed 0.8mmolCm�3. Zooplankton biomass
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models (EM4, EM5, EM8) and the three forcing fields (F1–F3). Red diamonds on the x-axis denote times of chlorophyll data assimilation.
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produced by EM8 is highly variable, with very
low surface concentrations during the Spring
Intermonsoon, and relatively low concentrations
during the early NEM and SWM time periods. Both
EM5 and EM8 produce deep subsurface maxima of
zooplankton biomass during the SIM. These results
are all independent of which physical forcing fields
are applied.

The pre-assimilation cost function (J0) can be
used to compare quantitatively overall model-data
misfit for the multiple combinations of models and
forcing fields (Table 1). When F1 is used, the lowest
cost function is obtained with EM5 (J0 ¼ 19.9),
EM4 produces the lowest cost function when F2 is
used (J0 ¼ 22.6), and EM8 produces the lowest cost
function when F3 is used (J0 ¼ 11.4). Furthermore,
for any given ecosystem model, the lowest cost
functions are consistently produced with F3.
3.2. Assimilation Experiment 1: optimization of all

control variables

In the first assimilation experiment all possible
ecosystem parameters are included as control
variables in the adjoint analysis. Again, there are
10 control variables for EM4, 16 for EM5, and 19
for EM8.

3.2.1. Experiment 1: post-assimilation distributions

The resulting simulated distributions of phyto-
plankton chlorophyll and zooplankton biomass
(Figs. 4 and 5) are strikingly different from the
analogous pre-assimilation distributions (Figs. 2
and 3). Whereas the pre-assimilation distributions
primarily depend on which ecosystem model is
implemented, the optimized, post-assimilation dis-
tributions are strongly dependent on which forcing
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is used. For example, all three models forced
by F3 produce phytoplankton concentrations of
0.4–0.5mg chlm�3 during both the NEM and the
SWM. During the Spring Intermonsoon all three
models also produce deep chlorophyll maxima with
similar magnitudes that are located at similar
depths.

Changing the forcing fields has a dramatic effect
on the simulated distributions. The 50-m-deep
chlorophyll maximum that was evident during the
Spring Intermonsoon for EM5 and EM8 prior to
assimilation is no longer present for F2, but does
appear for each of the ecosystem models when F1 is
applied. For all three models the application of F2
yields spurious oscillations of phytoplankton and
zooplankton concentrations that are most clearly
evident for EM4. These oscillations are at least
partly due to the discrete nature (4–6 snapshots) of
the assimilated data; presumably the assimilation of
higher resolution time series (e.g., ocean color or
bio-optical) would result in an oscillatory solution
being severely penalized.

Post-assimilation zooplankton distributions are
also highly dependent on which forcing fields are
applied. The strong peaks in zooplankton biomass,
apparent for the EM5 F1 model combination do
not exist when alternate forcing fields are used. For
EM8, F3 produces much higher concentrations of
zooplankton biomass than does F1. As is the case
for the chlorophyll distributions, the application of
F2 to EM4 results in spurious oscillations of
zooplankton biomass. These post-assimilation re-
sults indicate that the optimized models are more
strongly dependent on the choice of physical forcing
fields than were the original model simulations. In
addition, the post-assimilation distributions are
typically a stronger function of the physical forcing
fields than of ecosystem model complexity.
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Table 1

Model data misfit with no assimilation (J0), number of control variables, cost function (J) and predictive cost function (JP), for three

models of varying complexity forced by three different sets of physical fields. Results from both Experiments 1 and 2 are shown

Forcing Model J0 Experiment #1 Experiment #2

# Control

variables

J JP # Control

variables

J JP

F1 EM4 24.0 10 10.8 21.7 5 17.1 17.5

F1 EM5 19.9 16 11.3 20.0 2 14.7 19.6

F1 EM8 22.7 19 11.8 20.0 5 12.9 19.0

F2 EM4 22.6 10 9.6 20.7 6 10.9 19.9

F2 EM5 25.6 16 11.8 29.5 4 15.3 21.3

F2 EM8 26.2 19 13.4 32.5 2 18.0 18.5

F3 EM4 20.8 10 6.7 10.9 3 8.9 9.8

F3 EM5 15.2 16 5.1 12.4 4 9.8 12.4

F3 EM8 11.4 19 7.2 18.5 4 8.7 10.2

For Experiment 1, all control variables within each model are estimated via the variational adjoint method. For Experiment 2, an

objectively chosen subset of uncorrelated model parameters is estimated. Uncertainties are 70.5.
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3.2.2. Experiment 1: post-assimilation model-data fit

The assimilation process improves the model-data
fit for all assimilated fields to varying degrees:
chlorophyll (Fig. 6), zooplankton biomass (Fig. 7),
nitrate concentration (Fig. 8), primary production
(Fig. 9), and export flux (Fig. 10). Post-assimilation
model-data fit for chlorophyll (Fig. 6) is excellent,
especially for F3. A dramatic improvement in
model-data fit for zooplankton is also apparent
(Fig. 7). Because the physical model framework
does not allow vertical gradients of zooplankton
concentration within the mixed layer, the model-
data fits for zooplankton are not expected to be
substantially better than those obtained.

Nitrate concentrations are only slightly altered as
a result of the assimilation. Pre-assimilation model-
data fits within the mixed layer are generally
excellent, and thus there was little room for
improvement via assimilation. In early 1995 (ttn-
043 and ttn-045) the models all produce a nutricline
that is weaker than that observed (Fig. 8).
Throughout the remainder of the year, the models
all produce a sharper nutricline in better agreement
with the observations, but they overestimate its
depth. As a result, model-data agreement between
50 and 100m is poor. As discussed in Section 2.4,
this is primarily a problem with the physical forcing
fields, which no change in any ecosystem parameters
can remedy.

Differences between the chlorophyll, zooplankton
and nitrate profiles obtained using the three
different ecosystem models are greatly reduced
as a result of the assimilation. For example,
pre-assimilation F3 chlorophyll profiles for cruise
ttn-050 range from 0.4 to 1.1mg Chlm�3, whereas
the analogous post-assimilation profiles are nearly
identical and are independent of which ecosystem
model is used (Fig. 6). This is also the case for F1;
however, while the F3 results reproduce the data
quite closely, the F1 results for this cruise all
underestimate the assimilated data by nearly a
factor of 2. The assimilation also dramatically
decreases the disparity between the zooplankton
results of the various ecosystem models (Fig. 7). For
example, pre-assimilation F3 zooplankton surface
concentrations for the time frame of cruise ttn-050
range from 0.50 to 1.76mmol Cm�3. After assim-
ilation, the modeled values differ by only 0.3mmol
Cm�3. In general, the post-assimilation zooplank-
ton profiles, as well as the post-assimilation nitrate
profiles, are relatively independent of which forcing
or ecosystem model is implemented.

Pre-assimilation primary productivity profiles are
generally lower than the observations, especially
within the upper 25m (Fig. 9). The post-assimila-
tion EM4 profiles are nearly as high as observed,
but the EM8 profiles always underestimate the
productivity observations, despite the assimilation
of these data. As is the case for the other fields, pre-
assimilation export flux time series (Fig. 10) are
relatively independent of which forcing is used,
while the post-assimilation time series are very
sensitive to the forcing choice. F1 yields relatively
similar time series for all the ecosystem models, but
this is not the case for the other forcing fields. The
oscillations visible in the phytoplankton and zoo-
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plankton distributions for the EM4 F2 combination
(Figs. 4 and 5) result in a similarly unrealistic
oscillatory export time series. The negative export
fluxes obtained with the EM5 F3 combination are
even more disturbing.

3.2.3. Experiment 1: cost functions

Post-assimilation model-data misfits are quanti-
fied by the cost function, J (Table 1). The
assimilation dramatically reduces the cost function
(by 37–68%) for each model/forcing combination.
As was the case for the pre-assimilation results, for
any given ecosystem model post-assimilation cost
functions are lowest for F3. When either F1 or F2 is
used EM4 produces the lowest cost function,
whereas EM5 produces the lowest cost function
when F3 is used. For any given forcing, however,
the values of J obtained for each ecosystem model
are generally very similar, and in some cases are
within the 70.5 uncertainty estimates.
As discussed in Section 2.5.2, a more rigorous test
of the models involves examining how well each can
reproduce unassimilated data. Whereas the cost
function, J, quantifies how well each model
reproduces assimilated data, the predictive cost
function, JP, is defined to represent how well each
model reproduces unassimilated data and is com-
puted through a series of cross-validation model
runs. As one would expect, values of JP are always
greater than J (Table 1), since reproducing un-
assimilated data is clearly a more challenging test of
a model than is simply reproducing assimilated
data. In this experiment, however, not only are
values of JP greater than J, but they are also often
greater than the analogous values of J0, indicating
that the original models without assimilation often
reproduce the unassimilated data better than if a
subset of the data are assimilated. In these cross-
validation experiments, the inability of these models
to reproduce unassimilated data suggests that they
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have low predictive ability. Overall, the most
complex model, EM8 with 19 control variables,
produces the largest values of JP, whereas the
simplest model, EM4 with 10 control variables,
always produces values of JP that are less than the
analogous J0 values.

3.3. Experiment 2: optimization of control variable

subset

In the second assimilation experiment an objec-
tively and systematically chosen subset of ecosystem
parameters (Table 1) are selected as control vari-
ables in the adjoint analysis (see Section 2.5.3).

3.3.1. Experiment 2: post-assimilation distributions

The resulting simulated distributions of phyto-
plankton chlorophyll (Fig. 11) and zooplankton
biomass (Fig. 12) are very similar to those obtained
in Experiment 1 (Figs. 4 and 5). One of the most
noteworthy differences lies in the magnitude of the
oscillatory behavior for F2. Results from Experi-
ment 2 still show oscillations for EM4; however,
optimizing only a subset of uncorrelated ecosystem
parameters clearly dampens the magnitude of these
oscillations, as compared to Experiment 1. In
general, Experiment 2 produces slightly reduced
phytoplankton and zooplankton concentrations for
EM4 and increased concentrations for EM5 as
compared to the results for Experiment 1. EM8
simulations show very few differences between the
two experiments.

3.3.2. Experiment 2: post-assimilation model-data fit

The second assimilation experiment produces
phytoplankton and zooplankton distributions that
fit the data nearly as well as those from the first
assimilation experiment. Profiles (not shown) of
phytoplankton and zooplankton are very similar to
those shown in Figs. 6 and 7, while profiles of
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nitrate are indistinguishable from those shown in
Fig. 8. Primary productivity profiles are similar to
those of Fig. 9, but have somewhat reduced surface
rates. EM4, however, still produces the highest
rates, most closely aligned with the observations.

In contrast to the other model-data comparisons,
export flux comparisons for Experiment 2 show
some improvement over those obtained for Experi-
ment 1 (Fig. 10). Specifically, the negative fluxes
obtained for the EM5 F3 combination are rectified
here, and although the unrealistic oscillations
produced by the EM4 F2 combination still exist,
their magnitude has been reduced considerably.

3.3.3. Experiment 2: cost functions

As expected, the assimilation significantly reduces
the cost function (JoJ0 by 24–57%) for each of the
model/forcing combinations, which is only a slightly
smaller reduction in the magnitude of J than that
obtained in Experiment 1. Even more importantly,
the values of JP obtained from Experiment 2 are
always less than those obtained from Experiment 1.
In this experiment, on average JPoJ0 by 21% as
compared with the 1% average increase (JP4J0) for
Experiment 1. Thus, although Experiment 2 pro-
duces simulations that do not fit the assimilated
data quite as well as in Experiment 1, these
simulations reproduce unassimilated data much
better than the analogous Experiment 1 simulations.
For example, when data from the first, second and
fourth quarters of 1995 are assimilated using F3 and
the resulting parameters are used to estimate the
model-data misfit for the withheld third quarter of
1995 (ttn-050), Experiment 1 produces unrealisti-
cally high chlorophyll concentrations for EM4, and
unrealistically low concentrations for EM8 (Fig. 13;
dashed lines). Similarly, EM8 results in extremely
high concentrations of zooplankton (43mmol
Cm�3) during ttn-045 when data from the other
cruises are assimilated. On the contrary, Experiment
2 always produces realistic concentrations of all the
state variables (Fig. 13; solid lines).

As was the case for Experiment 1, F3 again
produces values of both J and JP that are
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significantly lower than those obtained with F1 and
F2. The predictive cost functions for the F3 EM4
and F3 EM8 combinations are the lowest obtained,
and are not significantly different from each other.

3.3.4. Experiment 2: optimized parameter values

In Experiment 1 where all possible parameters are
optimized, the resulting uncertainties in the para-
meter values computed from the Hessian matrix are
high (often greater than the magnitude of the
parameters themselves) because of correlations
between many of the ecosystem model parameters.
In Experiment 2 where only an objectively chosen
subset of parameters is optimized for each of the
nine modeling realizations, all optimized parameters
are well constrained and are associated with
relatively small uncertainties (typically less than
10% of the magnitude of the parameters).

The specific parameters that are included in the
optimized parameter subset varies as a function of
the ecosystem model and forcing fields; however,
certain parameters are always well constrained and
others are never well constrained. For example, the
remineralization and phytoplankton growth rates
are well constrained in each of the nine modeling
realizations because the cost functions, specifically
the chlorophyll, production and export compo-
nents, are very sensitive to these parameters. The
cost functions are also sensitive to the half-satura-
tion constants for nutrient uptake (kN), but the
sensitivity is lower than it is for phytoplankton
growth rate, i.e. a certain percent change in growth
rate will cause a greater change in the cost function
than an equivalent percent change in kN. Because
phytoplankton growth rate and kN typically appear
in the same term in the time rate of change of
phytoplankton equation, they are highly correlated
and cannot both be constrained; thus kN is not
included in any of the optimized parameter subsets.

Assimilation efficiency is another parameter that
typically is very well constrained. The cost functions
are typically somewhat sensitive to the maximum
grazing rate, but this sensitivity is lower than it is
for assimilation efficiency. Since both parameters
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appear in the same terms in each model and are
highly correlated, only assimilation efficiency and
not maximum grazing rate can be constrained.

Very little is known quantitatively about the
magnitude of phytoplankton and zooplankton
mortality rates. However, because these parameters
are typically correlated with other optimized para-
meters such as growth rate and assimilation
efficiency, they rarely appear in the optimized
parameter subsets.

4. Discussion

4.1. Ecosystem model structure

Objectively and quantitatively comparing ecosys-
tem model performance is not a straightforward
proposition. If models are compared without first
optimizing each one to the same data set, then it is
largely the degree of tuning that is being compared,
not the specific ecosystem structural characteristics.
Without data assimilation, comparison results are
also likely to be a strong function of the particular
physical forcing fields that are selected. For
example, prior to assimilation our five-component
ecosystem model produces the lowest model-data
misfit when the data-derived MLD and vertical
velocities are used. Alternatively, when forcing time
series are derived from the McCreary et al. (2001) or
the Murtugudde et al. (1996) model output, the
simpler and the more complex models, respectively,
yield the best model-data fits. This is primarily
because, prior to this study, the simplest model had
already been tuned for use with the McCreary
model (McCreary et al., 2001), whereas the most
complex model was initially tuned for the Murtu-
gudde model (Christian et al., 2002).

When the identical data are assimilated into these
models and all parameters in each model are
optimized (Experiment 1), the three ecosystem
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models perform much more similarly (Figs. 6–9).
Surprisingly, despite the fact that the most complex
ecosystem model (EM8) has more degrees of free-
dom (19 control variables) than the simplest model
(EM4 with 10 control variables), the more complex
model does not fit the data better than the simpler
model (Table 1). Export time series (Fig. 10;
Experiment 1), also demonstrate that neither the
EM4 nor the EM5 models produce reasonable
sediment fluxes: an unrealistic oscillating export flux
results in one case, and negative fluxes in another.

Although the cost function is an objective and
quantitative measure of how well each model
reproduces the assimilated data, a more general
and challenging test of model performance involves
examining how well the models reproduce a second
unassimilated data set. It is possible for models to
be tuned to a given data set and be able to
reproduce that data set extremely well, yet not be
able to match data from any other time or location,
i.e. have almost no predictive ability. For example,
suppose six bimonthly measurements of primary
production are available for a given region. A fifth-
order polynomial relating primary production to a
given environmental variable could be generated to
fit these data precisely, but such a model would be
unlikely to have any predictive ability. In this case,
the model would be fitting noise in the observational
data rather than the underlying functional relation-
ship. Since only the underlying functional relation-
ship would be common to both the original data set
and a second data set used to test predictive power,
a second-order polynomial fit to the first data set
would not provide as low a model-data misfit, but it
would very possibly yield better estimates of future
production than those derived from a high-order
polynomial. The noise in the two data sets would be
independent. Thus tuning the higher-order poly-
nomial such that it gave a good fit to the noise in the
first data set would not ensure a good fit to the
second data set. Analogously, a complex ecosystem
model with many unconstrained parameters can
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often be tuned to fit a single data set very well, but
simultaneously be unable to reproduce unassimi-
lated data, and therefore be characterized by very
low predictive ability.

In an attempt to assess the predictive abilities of
our models, we define the predictive cost function,
JP, and compute this based on a series of cross-
validation experiments. When all parameters are
optimized, the value of JP can be a strong function
of ecosystem model complexity: the most complex
model yields predictive cost functions that are 57%
(for F2) and 70% (for F3) higher than those of the
simplest model (Table 1). In these cases, the most
complex ecosystem model has many more control
variables than the data are able to constrain, and
many of these are highly correlated. In assimilation
and parameter optimization analyses, correlated
control variables by definition can never be con-
strained, since multiple combinations of values for
these parameters will result in identical model
simulations. As a result, very high uncertainty
estimates are associated with these control vari-
ables. These uncertainties lead to the high JP values
associated with the most complex model. Thus
when all model parameters are optimized, the three
ecosystem models fit the assimilated data equally
well; however, the more complex model cannot
reproduce unassimilated data as well as the simpler
models. On the contrary, when the method outlined
in Section 2.5.3 is used to objectively identify a
subset of uncorrelated control variables (Experi-
ment 2), the predictive cost functions for the most
complex model are significantly lower, and are very
similar to those of the other two models. In other
words, the models now exhibit an equal ability to
reproduce unassimilated data.

These results highlight the fact that care must be
taken when selecting the control variables to be
included in an assimilation analysis. Simultaneously
optimizing too many parameters in a complex
model, especially correlated parameters, can lead
to high uncertainty estimates associated with the
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resulting parameter estimates, high predictive cost
functions and poor predictive ability. Counter to
expectations, optimizing only a critical subset of
model parameters reveals that models of higher
complexity, i.e. those with multiple plankton size
classes or other state variables such as DON, do not
yield significantly better estimates of bulk properties
such as primary production, export, and chloro-
phyll concentrations. The simplest and most com-
plex models reproduce assimilated and
unassimilated data equally well.

4.2. Physical forcing fields

Changes in the physical forcing fields applied to
the ecosystem models produce far greater changes in
plankton distributions than do changes in ecosys-
tem model complexity. In both assimilation experi-
ments average model-data misfits (JP) obtained
using F3 are significantly lower than those obtained
with either F1 or F2 (Table 2). This highlights the
fact that biogeochemical variability is, to a large
extent, determined by physical forcing. If a key
physical process is missing or incorrectly modeled,
no change in ecosystem structure will be able to
overcome this physical model deficiency. While
other analyses (e.g., Hood et al., 2003) have reached
similar conclusions concerning the importance of
physical processes, this is the first study to have used
data assimilation techniques to rigorously assess the
relative importance of accurately modeling key
physical processes versus including additional levels
of ecosystem complexity.

The importance of correctly modeling physical
processes in data assimilative marine ecosystem
modeling studies cannot be overstated. If the time
scales or space scales of the physics in which an
ecosystem model is embedded are not consistent
with the ecosystem itself, unrealistic parameter
values can be obtained from the assimilation
analysis as it attempts to compensate for the
inadequate physical forcing fields. In this study,
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Table 2

Means and standard deviations of predictive cost functions for

the three ecosystem models using the same physical forcing (first

three rows) and for the three physical forcing fields using the

same ecosystem models (second three rows)

Experiment #1 Experiment #2

F1 20.671.0 18.771.1

F2 27.676.1 19.971.4

F3 13.974.0 10.871.4

EM4 17.876.0 15.775.3

EM5 20.678.6 17.874.7

EM8 23.777.7 15.974.9

For Experiment 1, all control variables within each model are

estimated via the variational adjoint method. For Experiment 2,

an objectively chosen subset of uncorrelated model parameters is

estimated.
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the broad spatial scales of the McCreary et al.
(2001) forcing fields (only four layers in the vertical)
are not consistent with the sharp vertical gradients
characteristic of many biogeochemical observations
(e.g., plankton and nutrient concentrations). This
inconsistency may be at least partially responsible
for the unrealistically high grazing rates that cause
the spurious phytoplankton/zooplankton oscilla-
tions apparent in Figs. 4, 5 and 10. Interestingly,
although the very high temporal resolution of these
forcing time series (resolution of diurnal changes in
MLD) was expected to be advantageous for F2,
additional experiments using daily averaged mixed
layers demonstrate that identical results are ob-
tained whether or not the MLDs resolve diurnal
variability. This is not to say, however, that
including diurnal variability is not important.
Indeed, recent analyses demonstrate that the inclu-
sion of a diurnal cycle has very important influences
on MLD variability as well as the intraseasonal and
interannual supply of nutrients (McCreary et al.,
2001; Wiggert et al., 2002).

Although one might logically assume that the
mooring data-derived MLDs and vertical velocities
(F1) would be most consistent with biogeochemical
cruise observations and thus produce the lowest
model-data misfits, this is not the case. In fact, the
distance between the mooring and the S7 station
location (�80 km) is large enough to cause sig-
nificant differences between the MLDs obtained
from the mooring and those obtained from the
cruise CTD casts. For example, compare the
63–65m MLD estimates derived from the mooring
data (15.51N, 62.51W), with the 50m MLD
observed at S7 (16.01N, 62.01W; YD248) and the
100m MLD observed at station S9 (15.251N,
63.51W; YD249).

A comparison of TOPEX-Poseidon images
for this time and location reveals that mesoscale
features are moving roughly 8–10 km per day
(Dickey et al., 1998) and are thus consistent
with a 10-day time difference between an event
occurring at the S7 site and at the mooring location.
This time lag may be largely responsible for the
poorer performance of the models forced by
the data-derived MLD time series (F1), as com-
pared with the models forced by the Murtugudde
model (F3).

While the success of F3 results from a number of
factors, the excellent model-data fit for the ttn-050
chlorophyll values (Fig. 6) plays the largest single
role. Models forced by F1 or F2 are unable to
capture these high (O (1.0mg chlm�3)) chlorophyll
values, whereas models forced by F3 reproduce
these high concentrations even when these data
are omitted from the assimilation (Fig. 13;
Experiment 2).

In the models these high chlorophyll concentra-
tions are produced by the rapid shoaling of the F3
mixed layers from 105m on YD239 to 30m on
YD249 (Fig. 1B). Prior to YD239, the very deep
mixed layer mixes high nutrient waters all the way
to the surface, but it also decreases the average light
supply by mixing phytoplankton below the critical
depth. As the mixed layer shoals, nutrient concen-
trations remain high at the surface, while daily
integrated irradiance experienced within the mixed
layer increases substantially. The result is a rela-
tively short-lived ‘‘detrainment bloom,’’ i.e. the
classic spring bloom mechanism of Sverdrup
(McCreary et al., 1996), which lasts until the surface
nitrate is consumed.

Despite much smaller changes in MLD, a
detrainment bloom of similar magnitude is also
produced by the F2-forced models. Both the 57-m
shoaling (F2) and the 75-m shoaling (F3) produce
chlorophyll concentrations of roughly 1.0mg
chlm�3. However, because the shoaling begins 10
days earlier for F3 (YD239) than it does for F1 and
F2 (YD249) (Fig. 1B), surface chlorophyll concen-
trations obtained with F3 are high (O (1mg
chlm�3)) by the time the data were collected on
(YD248), whereas surface chlorophyll concentra-
tions obtained with the other forcing fields
id not reach O (1mg chlm�3) until after YD254
(Fig. 14).
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To investigate the idea that the F3-forced models
produce lower cost functions because of the timing
of this entrainment bloom, Experiment 2 is per-
formed with two additional physical forcing fields
(F4 and F5), which, except for the following
modifications, are both identical to those of F3.
For F4, during the time period YD220-242 the
depth of the mixed layer is raised from below 100 to
65m, so that it is roughly equal to the depth of the
F2 mixed layer. For F5, an alternate mixed-layer
time series is used from YD220-255 (Fig. 1B). This
alternate time series is derived from the same
Murtugudde et al. (1996) model, but in this case
output from a higher spatial resolution simulation is
used. Essentially, F4 tests the models’ sensitivity to
a change in the magnitude of mixed-layer shoaling
associated with the termination of the SWM,
whereas F5 tests the models’ sensitivity to a change
in the timing of this shoaling.

Results from this simple experiment demonstrate
that changing the depth of the mixed layer during
the SWM produces only a small change in model-
data misfit. When the mixed-layer depth is raised
from 4100 to 65m, the average value of JP for the
three ecosystem models (F4: JP ¼ 12.571.3) is not
significantly changed (F3: JP ¼ 10.871.4; Table 2).
On the contrary, when the timing of the mixed-layer
shoaling is altered, the average JP value (F5:
JP ¼ 17.271.4) is outside the standard deviation
of the F3 values, and is in much better agreement
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with the other values (F1: JP ¼ 18.771.1; F2:
JP ¼ 19.971.4; Table 2). These results suggest that
the significant differences obtained using the differ-
ent physical forcing fields are largely attributable to
differences in the timing of the mixed-layer shoaling
and detrainment bloom associated with the termi-
nation of the SWM.

This example also demonstrates the critical
importance of having physical models that not only
resolve the correct dynamics, but also reproduce the
correct timing of events. This is particularly crucial
when data assimilation and parameter estimation
techniques are applied. Simulated plankton distri-
butions obtained from an ecosystem model forced
by a mixed-layer time series that is uniformly too
shallow can be made to fit the available data by
adjusting parameters such as uptake and growth
rates; however, an ecosystem model forced by a
mixed-layer time series that shoals at the wrong time
will never produce plankton distributions in agree-
ment with the data, no matter how many ecosystem
parameters are adjusted. Developing physical mod-
els that reproduce the correct processes with the
correct timing is a difficult task and is one that can
probably best be accomplished by the assimilation
of physical data.

Although the F3 forcing successfully reproduces
the high chlorophyll observations from ttn-050, it is
not completely clear whether the processes behind
these high chlorophyll concentrations are correctly
simulated. As discussed above, the models all react
quickly to the sharp shoaling of the mixed layer and
detrainment blooms are produced. However, several
lines of evidence suggest that the high chlorophyll
concentrations at S7 during ttn-050 were associated
with a filament extending from the coastal upwelling
zone just north of the southern transect, that
advected coastal diatom communities well offshore
(Flagg and Kim, 1998; Barber et al., 2001;
Manghnani et al., 1998; Latasa and Bidigare,
1998; Garrison et al., 1998). Thus, these high
chlorophyll concentrations at S7 may not result
from in situ growth due to a detrainment bloom,
but rather from the offshore advection of a coastal
bloom. Furthermore, this mesoscale activity does
not appear to impact the mooring location, as
mixed-layer time series from a 1-D mixed-layer
model forced with heat and momentum fluxes
measured by the mooring’s surface buoy show
excellent correspondence with the F1 mixed layer
throughout the SWM (data not shown). Therefore,
while the models forced by F3 manage to reproduce
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the high ttn-050 chlorophyll observations, they may
be doing so for the wrong reasons. This demon-
strates that application of data assimilation to
achieve the best-fit model solution can be mislead-
ing if the additional context derived from all
available ancillary data is not taken into account.

5. Conclusions

As knowledge regarding the complex components
of marine ecosystems continues to grow, the models
developed to examine these systems are correspond-
ingly becoming more complex as they include
increasing numbers of organisms and biological
processes. Unfortunately, our knowledge of ecosys-
tem complexities is growing faster than the available
validation data sets, leading to the development of
models with a greater number of unconstrained
parameters. As the number of degrees of freedom
for these models continues to grow, these models
may become better able to reproduce specific data
sets. However, as illustrated by this analysis, the fact
that a model is better able to reproduce a given data
set does not necessarily imply that this model will be
better able to reproduce a second data set, taken
from a slightly different time or location. Nor does
it imply that it will have greater predictive ability.

Data assimilation techniques are becoming in-
creasingly popular, as ocean-color time series such
as Sea-viewing Wide Field-of-view Sensor (Sea-
WiFS) and Moderate Resolution Imaging Spectro-
radiometer (MODIS) and in situ time series (e.g.,
the Bermuda Atlantic Time-Series Study and
Hawaii Ocean Time-Series) continue to grow in
length, availability and comprehensiveness. Apply-
ing formal data assimilation techniques, such as the
variational adjoint method, is a useful way to avoid
difficulties associated with subjectively tuning the
many parameters typically associated with marine
ecosystem models. By design, data assimilation
reduces model-data misfit and typically results in a
best-fit model solution for a given data set. As
demonstrated in this paper, these techniques can
also be used as a tool for quantitatively and
objectively comparing the performance of multiple
ecosystem models of varying complexity.

In all of these data assimilation applications, care
must be taken when selecting the specific parameters
to be optimized. Simultaneously optimizing too
many unconstrained parameters, especially partially
correlated ones, can lead to very high parameter
uncertainties and unrealistic parameter values. In
this study, the estimation of too many uncon-
strained parameters results in excessively high
grazing rates that are the likely cause of the spurious
phytoplankton/zooplankton oscillations that ap-
peared most prominently in the simplest model.
Although this may not have a deleterious effect on
model-data fit for the assimilated data set, it can
significantly impair a model’s ability to reproduce,
or ‘predict’ unassimilated data. Fortunately such
oscillations can likely be avoided by assimilating
time series data, e.g., ocean color or bio-optical
data, in addition to the in situ profile snapshots
assimilated here.

Here we present a method for selecting a subset of
model parameters for optimization, which tends to
remove correlated parameter pairs and maximize
the predictive ability of a model. In short, by using
the inverse of the Hessian matrix to determine the
sensitivity of the cost function to each model
parameter, and by optimizing only those parameters
to which the cost function is most sensitive, greatly
improved results were obtained for a set of cross-
validation experiments and predictive ability was
enhanced.

To our knowledge this is the first study to use
data assimilation to rigorously demonstrate that the
inclusion of additional state variables (e.g., DON or
multiple plankton or detrital size classes) does not
necessarily improve an ecosystem model’s ability to
reproduce unassimilated bulk biogeochemical dis-
tributions and rates, such as primary production,
export, plankton concentrations and nutrients.
Specifically we find that if a complex model is
associated with too many unconstrained para-
meters, it fails to reproduce any data successfully
except those that are assimilated. In this case the
model may be describing noise in the original data
set and the price associated with fitting noise is a
loss of predictive ability. On the contrary, when
only an objectively and systematically chosen subset
of parameters is optimized, the models all demon-
strate enhanced predictive ability, with the complex
model exhibiting the greatest improvement. By
choosing to optimize only uncorrelated parameters
to which the cost function is most sensitive, tuning
models to describe noise can be avoided or at least
minimized. Hopefully, as the collection of addi-
tional observations beyond the standard suite
applied herein becomes commonplace, it will be
possible to expand the subset of uncorrelated
parameters such that the potential of more complex
ecosystem models can be better realized.
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This analysis also demonstrates that small
changes in physical forcing fields can produce
greater changes in plankton distributions than
substantial changes in ecosystem model complexity.
The fact that biological distributions are very
sensitive to the physical environment is not a new
result; however, this study is uniquely able to
quantify rigorously the importance of the physical
processes, and compare this to the importance of
ecosystem model complexity. Here we find that it is
crucial to correctly capture the timing of major
events, such as the shoaling of the mixed layer at the
termination of the SWM. In an assimilative analysis
such as that described here, a mixed layer that is
slightly too deep can be compensated for by slight
changes in growth and grazing parameters; how-
ever, no reasonable change in ecosystem parameters
can correct for a mixed layer that shoals at the
wrong time. Deficiencies in physical forcing fields
and inconsistencies between temporal or spatial
scales resolved by the physical and biological
models also can cause the data assimilation process
to yield inappropriate model parameters, resulting
in unrealistic ecosystem behavior and low model
predictive capability. The simultaneous assimilation
of both physical and biological data is the most
reliable means for ensuring that physical and
biological models are consistent, and the timing of
major physical events is correct.

An extension of the analysis presented here that is
currently underway includes the simultaneous as-
similation of data from three very distinct locations:
the Arabian Sea, the North Atlantic and the
equatorial Pacific. Through this effort we are
investigating whether a complex model is more
capable than a simple model of reproducing
observed behavior when a constant parameter set
is applied at all three locations. The data assimila-
tion framework and methods established here will
be used to address this question.
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