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ABSTRACT 
 
The barndoor skate Dipturus laevis is one of seven species in the United States 

Northwest Atlantic skate complex.  The species received little attention until a recent 
article published in Science reported that the barndoor skate might be on the brink of 
extinction.   In this study, we address not only the virtual lack of information on the life 
history of the species, but also develop methodologies to assist in the assessment of the 
barndoor skate population. 

To investigate the life history of the species, data were collected from 2,310 
specimens caught during commercial sea scallop dredging in the southern section of 
Georges Bank Closed Area II.   Vertebral analysis was used to generate an age-growth 
relationship, and a visual inspection of reproductive tracts provided the timing of 
maturity.  Our results suggest faster growth and younger female maturation than 
previously believed.  Stomach samples were also collected from specimens to study food 
habits.  Ontogenetic shifts in the utilization of prey items were observed, and above the 
size at maturity, food habits were significantly different between the sexes. 

In the second part of this work, we develop three methodologies for use in stock 
assessments.  The first method is an extension of the Beverton-Holt mean length 
mortality estimator. This methodology is commonly used but has the restrictive 
assumption of equilibrium conditions.  We derive an equation to describe the transitional 
behavior of the mean length statistic for use in non-equilibrium conditions and apply it to 
data from Goosefish (Lophius americanus) in the northwest Atlantic.  For the second 
method, we begin by discussing some common problems in the application of 
demographic models (i.e. Leslie matrices and life tables) to elasmobranchs.  We illustrate 
these problems, and describe methods for estimating the maximum population growth 
rate, and present applications to two species of elasmobranch:  barndoor skate Dipturus 
laevis and lemon shark Negaprion brevirostris.  The third method we develop is an 
extension of the Heincke method.   This method requires only recruits and non-recruits to 
be identifiable and uses catch rate data from two consecutive years to estimate a mortality 
rate.  We generalize the approach to include more than two years of data and compare 
results to those obtained from the Goosefish mean length analysis.   

In the last section we use information from the NMFS annual groundfish surveys, 
our newly-derived life history parameters and our methodological developments to 
conduct a stock assessment of the barndoor skate.  Mortality rates, estimated from both 
our mean length and catch rate methods, appear to have been very high in the 1960’s and 
are currently at very low levels.  There is no evidence of a high current fishing mortality 
rates or any threat to the population.  In the final manuscript we develop both a stock-
recruit and Leslie matrix model to gain insights on the population dynamics of the 
species.   The results of both approaches were comparable suggesting that species may be 
more resilient to fishing pressure than previously believed and capable oft growing at an 
annual rate in excess of 40%.   
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Chapter 1 
 
 
 

GENERAL INTRODUCTION 
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The barndoor skate Dipturus laevis (Mitchill 1817), is one of many skate and ray 

species caught as bycatch in finfish trawl and scallop dredges in the Northwest Atlantic. 

Until recently, this species has received little attention, due primarily to its low market 

value (Musick et al., 1999; Dulvy et al., 2000; Kulka et. al., MS 2002), until a recent 

study suggested its potential extinction (Casey and Myers, 1998).  Casey and Myers 

(1998) reported that the barndoor skate, once a common bycatch species off southern 

Newfoundland, had become locally extirpated in parts of its northern range due to 

overfishing.  They also contended that “long-term research surveys on the continental 

shelf between the Grand Banks of Newfoundland and southern New England reveal 

that….the barndoor skate….is close to extinction (Casey and Myers, 1998).”  

Environmental groups quickly responded to the results presented in the Casey and 

Myers (1998) article.  Greenworld Organization and the Center for Marine Conservation 

filed petitions with the National Marine Fisheries service to 1) list the barndoor skate as 

an endangered species 2) immediately designate Georges Bank as critical habitat and 

implement large area closures and 3) list other similarly appearing species of skates as a 

precautionary measure (NOAA 1999).   The IUCN (Union for the Conservation of Nature 

and Natural Resources) followed suit and after initially listing the species as vulnerable, 

they upgraded the threat status to endangered.  Thus, the barndoor skate became the focus 

of many conservation and extinction risk debates (Diaz-Soltera, 1999; Musick et. al., 

1999; NEFSC, 2000).  

As the controversy brewed, I began my research in this arena while conducting 

field work for my Masters thesis on commercial scallop vessels on Georges Bank.  Based 

on the data presented in the Casey and Myers (1998) article I had expected to encounter a 
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lone skate or two, and was only prepared to work up a few dozen animals.   I was 

pleasantly surprised to document over 100 barndoor skates in the first two days of 

fishing.  My dissertation was born.  It began as a straightforward investigation of the life 

history of the species and has evolved to include the development and application of 

stock assessment methodologies to assess the status of the barndoor skate.  Including this 

general introduction and a conclusion chapter, the dissertation consists of seven 

manuscripts, written in journal format, that fall under three general topics:  1) Life history  

2) Stock assessment methods 3) Barndoor skate stock assessment.   

 

Life History 

Age-growth and Maturity 

Understanding the life history traits and quantifying the age and growth 

parameters for individual species has been recognized as crucial in the risk assessment 

and management of marine fishes (Parent and Schrimi, 1995; Musick, 1999a; Musick, 

1999b).  A recent stock assessment of the United States Northwest Atlantic skate 

complex (NEFSC, 2000) listed the three largest species; barndoor, winter (Leucoraja 

ocellata), and thorny skates (Amblyraja radiata), as overfished and identified a need for 

further studies of the age, growth, and reproduction.  Our work has focused on defining 

these critical life history parameters for the barndoor skate.  The manuscript in Chapter 2, 

entitled “Observations on the Life History of the Barndoor Skate, Dipturus laevis, on 

Georges Bank (Western North Atlantic)” was published in 2005 in the Journal of 

Northwest Atlantic Fishery Science (35:67-78). 
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Food Habits 

Understanding the feeding habits of the barndoor skate can bring valuable insight 

into predator-prey relationships and can contribute to future studies of trophic 

interactions (Caddy and Sharp 1986).     Unfortunately, very little is known about their 

food habits and how they fit into the overall ecosystem.  Limited information from 

descriptive studies of the Northwest Atlantic fish complex report that juvenile barndoor 

skates apparently subsist mainly on benthic invertebrates, while larger individuals eat 

larger and more active prey (Bigelow and Schroeder, 1953; Mceachran and Musick, 

1975; NOAA, 2003).  Primary prey is believed to consist of polychaetes, copepods, 

amphipods, isopods, the sand shrimp Crangon septemspinosa, and fish such as spiny 

dogfish, alewife, Atlantic herring, menhaden, hakes, sculpins, cunner, tautog, sand lance, 

butterfish and various flounders.  There is simply not enough data available to assess 

habitats which are critical for the feeding, growth or reproduction of the species.  

The current study provides vital information to the current closed area 

management strategy on Georges Bank and assists in the designation of essential fish 

habitat defined as “those waters and substrate necessary to fish spawning, breeding, 

feeding, or growth to maturity (16 U.S.C. 1802(10))”.  Chapter 3, entitled “Ontogenetic 

and Sex-specific Shifts in the Feeding Habits of the Barndoor Skate (Dipturus laevis) on 

Georges Bank”, addresses a research need identified in both the 2001 SAFE report 

(NEFMC, 2001) and the recent essential fish habitat source documents (NOAA, 2003) to 

“investigate trophic interactions between skate species in the complex, and between 

skates and other groundfish.” 
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Stock Assessment Methods 
 
Estimating mortality from mean length data  

Baranov (1918, cited in Ricker 1975) was apparently the first to deduce that 

equilibrium mean length in a fish population is inversely related to the mortality rate 

experienced by the population. Beverton and Holt (1956, 1957) observed the same thing 

for a more realistic situation where length is an asymptotic, rather than linear, function of 

time. They also derived an expression for estimating the total instantaneous mortality 

rate, Z, from the mean length of those animals above the length Lc, L ; 

cLL
LLKZ

−
−

= ∞ )(     

where K and L∞, are the von Bertalanffy growth parameters,  Lc is the so-called length of 

first capture (smallest size at which animals are fully vulnerable to the fishery and to the 

sampling gear), and L is the mean length of the animals above the length Lc. 

 The Beverton-Holt mortality estimator has received widespread use, especially in 

data-limited situations; however, it is based on a restrictive assumption of equilibrium 

conditions.  In this chapter, we derive the transitional behavior of the mean length 

statistic for use in non-equilibrium conditions.  We investigate conditions affecting the 

reliability of the Beverton-Holt results and then develop a new procedure that allows 

mortality rates to be estimated from non-equilibrium mean length data following a 

permanent change in mortality, based on the relationship:   

1 2 1 2 1 2

1 2 1 2 1 2

( ){ ( )exp( ( ) )} 
( )( )( ( )exp( ))

cZ Z L L Z K Z Z Z K dL L
Z K Z K Z Z Z Z d

∞
∞

− + + − − +
= −

+ + + − −
  

where Z1 is the first level of mortality, Z2 is the second level of mortality, and d is the 

years since the change in mortality occurred.    The equation has also been generalized to 
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account for multiple changes in mortality and incorporated into a likelihood function to 

fit actual time-series survey data.  

We then apply this new methodology to the goosefish (Lophius americanus) 

assessment, which was criticized for its use of the Beverton-Holt estimator under non-

equilibrium conditions.  Using data from the 1963-2002 National Marine Fisheries 

Service annual fall groundfish surveys off the Northeast United States, we estimated 

using the method of maximum-likelihood that total mortality of goosefish in two distinct 

management regions.  The new, non-equilibrium estimator allows a change in mortality 

to be characterized reliably several years faster than if the Beverton-Holt estimator is 

used and results compare extremely well with information from landings data and the 

conclusions of the goosefish stock assessment.   

The manuscript in Chapter 4, entitled “Estimating mortality from mean length data in 

non-equilibrium situations, with application to the assessment of goosefish (Lophius 

americanus)” was published in 2006 in the Transactions of the American Fisheries 

Society (135:476-487).  Having found the new procedure to have worked well in a simple 

case with small sample sizes, we proceeded to modify the model to the more complicated 

case of the barndoor skate where recruitment may be linked to mortality rates (Chapter 

8).  

 

Estimating mortality from catch rates  

Survival rates can be estimated from annual surveys by tracking the abundance of 

one or more cohorts, as measured by catch per unit of sampling effort, from one year to 

the next.  It can be difficult to attain reasonable precision unless sampling effort is 
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extensive. Indeed, estimates of survival exceeding 100% are not infrequently obtained. 

Heincke (1913) was apparently the first to suggest pooling data over ages although he 

formulated the estimation procedure in terms of a cross-sectional catch curve (age 

composition observed in one year) rather than as a longitudinal catch curve (changes in 

abundance of specified cohorts monitored over time).  

A generalization of this which includes more than two years of data has not been 

given previously and is developed in our study. We show that data from several years can 

be analyzed simultaneously to obtain a single estimate of survival under the assumption 

that survival is constant over the period analyzed. The method requires that only a single 

age group need be identifiable and thus has minimal data requirements. Estimates of 

goosefish (Lophius americanus) survival obtained by this method compare favorably 

with estimates obtained by analyzing changes in mean length over time.  The manuscript 

in Chapter 5, entitled “Simple Methods for Estimating Survival Rate from Catch Rates 

from Multiple Years”, is currently under review in the Transactions of the American 

Fisheries Society.  

 

 
Demographic models for elasmobranchs:  pitfalls, advances and applications 

Leslie matrices and life tables are demographic models commonly used to 

evaluate the ability of specific elasmobranch life history strategies to sustain given levels 

and patterns of fishing pressure.  These models are generally density-independent and 

provide an instantaneous rate of population growth for a specified set of life history traits 

which correspond to a specific population size.  Many investigators are using these 

models to compute rates of population growth that they claim are estimates of maximum 
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population growth rate (rintrinsic); they then use these estimates to compute purported 

estimates of maximum sustainable fishing mortality (Cortes 2004).  However, neither a 

Leslie matrix nor a life table can be used to estimate rintrinsic without additional 

information except in the special case where a severely depleted population is modeled.  

Only in a severely depleted population will competition for resources be at a minimum 

and both density-dependent compensation and the rate of growth be at a maximum (i.e., 

at rintrinsic).  The fundamental problem is to determine the life history parameters that 

would occur if the population were extremely depleted because extensive observations on 

extremely depleted populations are rare. In the absence of such data, rintrinsic can only be 

estimated from these types of density-independent models by extrapolating observed 

population growth rates towards zero population size.   

In this chapter, we illustrate the problems in, and describe methods for, estimating 

rintrinsic, and making further inferences when additional information can be utilized.  We 

derive methods for estimating rintrinsic and apply them to two species of elasmobranch:  

barndoor skate Dipturus laevis and lemon shark Negaprion brevirostris. The manuscript 

in Chapter 6, entitled “Using demographic models to determine intrinsic rate of increase 

and sustainable fishing for elasmobranchs:  pitfalls, advances and applications”, is 

currently under review with The North American Journal of Fisheries Management.   

 
 
Barndoor Skate Stock Assessment 
 
 
Estimating Total Mortality 

Following the Casey and Myers (1998) article, managers were faced with the task 

of assessing a population with limited life history information and survey data that 
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contained only a few animals a year.  One of the key pieces of information to assess the 

threat to the species is the current mortality rate.  Unfortunately, estimating this 

parameter through classical approaches proved difficult.  In this study we use variants of 

commonly used methodologies to estimate total mortality.  We present two methods:  a 

length based estimator based on the logic presented in Chapter 4, and the application of 

the catch rate estimator developed in Chapter 5.  The length based estimator has been 

restructured to include actual recruitment into the model, thus avoiding the assumption of 

constant recruitment which is likely to be violated considering the reproductive strategy 

of the barndoor skate. With this approach we are able to evaluate the historical and 

current mortality rates on the barndoor skate population and gain insights as to the 

population dynamics of the species.  The manuscript in Chapter 7 is entitled “Total 

Mortality Rates of the Barndoor Skate, Dipturus laevis, in the Northeast United States, 

1963-2005.” 

 

Stock-recruit dynamics and the maximum population growth rate  

Although we present some information on mortality rates, the overall population 

dynamics of the barndoor skate remains largely unexplored.  In this chapter we use 

information from the NMFS annual groundfish surveys on Georges Bank and the Gulf of 

Maine to develop both a stock-recruit and Leslie matrix models to gain insights on the 

population dynamics of the species.   We follow the methodology laid out by Myer’s et 

al. (1997, 1999) for the analysis of the stock-recruit relationship and that of Chapter 6 for 

the demographic analysis to investigate two critical (and related) components of the 

barndoor skate population dynamics:  the relationship of recruitment to spawner 
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abundance and the maximum population growth rate.  A compelling stock-recruitment 

was found in the fall survey data suggesting that recruitment is closely tied to spawner 

abundance.  Data were fit with both the Ricker and Beverton-Holt stock-recruit models 

and estimates of the slope at the origin generated.  As in Myers et al. (1997) these 

parameters provided an estimate of the maximum annual reproductive rate and were then 

converted to estimate an instantaneous maximum population growth rate.    

A second analysis was also conducted using a Leslie matrix, data from the NMFS 

survey, and the methods outlined in chapter 6.  Observed rates of population change were 

used to estimate first year survival and incorporate density dependant logic into the 

density dependant framework of a Leslie matrix demographic model.  The results of both 

approaches were comparable suggesting that species may be more resilient to fishing 

pressure than previously believed and capable of growing at an annual rate in excess of 

40%.  The manuscript in Chapter 8 is entitled “Total Mortality Rates of the Barndoor 

Skate, Dipturus laevis, in the Northeast United States, 1963-2005.” 
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Abstract 

The barndoor skate (Dipturus laevis) has been reported to be close to extinction in 

parts of its northern range and is believed to be particularly vulnerable to fishing 

mortality due to its relatively large size. A lack of basic life history information, however, 

has hampered an accurate assessment and management of north Atlantic populations.  In 

an attempt to fill this void, information was collected from 2,310 specimens caught 

during commercial sea scallop dredging in the southern section of Georges Bank Closed 

Area II.   Eighty-seven fish were determined to be mature from a visual inspection of 

reproductive tracts and the allometric growth of claspers, oviducal glands, and 

developing ova.  Sexual dimorphism was apparent in length at 50% maturity with 

females maturing at 116.3 cm and males at 107.9 cm.  A preliminary analysis of 118 

vertebrae indicates faster growth (k = 0.14 to 0.18 yr-1) and younger female maturation 

(6.5 to 7.2 yrs.) than previously believed.  Thus, resilience of the barndoor skate to 

overfishing may be higher than recently assumed.  
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Introduction 

The barndoor skate Dipturus laevis (Mitchill 1817), is one of many skate and ray 

species caught as bycatch in finfish trawl and scallop dredges in the Northwest Atlantic. 

Until recently, this species has received little attention, due primarily to its low market 

value (Musick et al., 1999;  Dulvy et al., 2000; Kulka et. al., MS 2002), until a recent 

study suggested its potential extinction (Casey and Myers, 1998).  Casey and Myers 

(1998) reported that the barndoor skate, once a common bycatch species off southern 

Newfoundland, had become locally extirpated in parts of its northern range due to 

overfishing.  They also contended that  “long-term research surveys on the continental 

shelf between the Grand Banks of Newfoundland and southern New England reveal 

that….the barndoor skate….is close to extinction (Casey and Myers, 1998).” Subsequent 

petitions to place the species on the U.S. National Marine Fisheries Service Endangered 

Species List and listing of the barndoor skate as vulnerable by the IUCN (Union for the 

Conservation of Nature and Natural Resources) placed the barndoor skate in the middle 

of conservation and extinction risk debates (Diaz-Soltera, 1999;  Musick et. al., 1999;  

NEFSC, 2000).  

The barndoor skate is the largest member of the family Rajidae found in the 

northwestern Atlantic, reaching a maximum length of 152 cm and a weight of 20 kg 

(Bigelow and Schroeder, 1953a).  The species is found from Cape Hatteras to the Grand 

Banks of Newfoundland, Gulf of St. Lawrence and Nova Scotia (Leim and Scott, 1966; 

McEachran and Musick, 1975).  It ranges from shallow coastal waters to depths greater 

than 400 meters and tolerates water temperatures of 1.2-200 C (Bigelow and Schroeder, 

1953b; McEachran and Musick, 1975).  Recent analysis of Canadian survey and 
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commercial fisheries data suggests that the overall distribution of the species is far more 

extensive than originally thought both in terms of depth and northern range (Kulka et al., 

MS 2002; Simon et al., MS 2002).  Barndoor skates were found as far north as the 

Labrador Shelf to 620 N and into depths of about 1600 meters with significantly higher 

catch rates at depths below 450 meters (Kulka et al., 2002; Simon et al., MS 2002). These 

studies strongly indicate that Casey and Myers (1998) used a data set that poorly sampled 

barndoor skate overall distribution and as such substantially underestimated the actual 

barndoor skate population. 

Due primarily to their large size and therefore presumed late maturation, barndoor 

skates are believed to be particularly vulnerable to the effects of high levels of fishing 

mortality; however, very little information is available on the biology and ecology of the 

barndoor skate to make an accurate assessment.  Elasmobranchs in general have 

relatively low reproductive rates and low intrinsic rates of population increase due to 

their late maturity and low fecundity (Hoenig and Gruber, 1990; Camhi et al, 1998; 

Walker and Hislop, 1998).  

This life history strategy relies on a relatively high survival of a few well-

developed offspring and results in a direct and limiting relationship between the number 

of adults in the population and number of young-of-year.  The pattern of more productive 

species, like that exhibited in most teleost fishes involves the highly variable survival of 

many fragile offspring and greater fluctuations in the relative number of surviving young-

of-year. In both strategies, changes in environmental conditions or fishing pressure can 

result in the increased survival of offspring but the potential for a large recruitment event 

or a quick recovery from overfished or depressed populations is much lower in the less 
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productive species.  Compounding the effects of excessive fishing on recovery potential 

is the interrelationship of life history traits and the trend towards later maturity among the 

larger, less fecund species.  This results in longer generation times, a greater chance of 

juvenescence, and a significant delay between a reduction of fishing mortality and an 

increase in the number of spawning adults. Holden (1973) and Brander (1981) have 

shown that differences in life history parameters of elasmobranchs, particularly size at 

maturity and overall body size, result in species-specific responses to fishing mortality. 

The European common skate (Dipturus batis) and at least four other North Sea skates 

have all undergone severe regional population declines due in part to their relatively large 

size, late maturation, low fecundity and resulting sensitivity to fishing mortality (Brander, 

1981; Walker and Heessen, 1996; Dulvy et al., 2000), an affect less apparent in smaller 

species  

Understanding these life history traits and quantifying the age and growth 

parameters for individual species have been recognized as crucial in the risk assessment 

and management of marine fishes (Parent and Schrimi, 1995; Musick, 1999a;  Musick, 

1999b).  A recent stock assessment of the United States Northwest Atlantic skate 

complex (NEFSC, 2000) listed the three largest species; barndoor, winter (Leucoraja 

ocellata), and thorny skates (Amblyraja radiata), as overfished and identified a need for 

further studies of the age, growth, and reproduction of these species.  Our recent work has 

focused on defining these critical life history parameters for the barndoor skate.  This 

paper presents the first significant information on the life history of the barndoor skate 

collected from 2,310 specimens in the western North Atlantic. 
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Methods 

All of the specimens used in this study were collected onboard commercial 

scallop vessels fishing in the southern portion (south of 410 30" N) of Georges Bank 

Closed Area II.  (Figure1). This area was closed to the use of mobile fishing gear in 

December of 1994 in an effort to rebuild groundfish stocks.  Following five years of no 

fishing effort in this area, the southern portion of Closed Area II was opened to limited 

commercial scallop fishing in June of 1999.   Data was collected on twelve trips between 

June and November of 1999, 2000, and 2001.  Vessels fished with two 15-foot New 

Bedford style sea scallop dredges (Posgay, 1957) constructed with a 10 inch mesh twine 

top and either 3.5 or 4 inch ring bags.  Gear was towed in 55-73 meters of water at an 

average speed of 9.2 km/hr. A total of 1,311 tows were made from seven different 

commercial vessels during 90 days at sea. 

 Although the barndoor skates were not a significant percentage of fish bycatch, 

we observed enough individuals to initiate a comprehensive study of the barndoor skate 

in Georges Bank Closed Area II. Positive identification of the barndoor, which has been a 

concern in some published material (McEachran and Musick, 1975), was assured by the 

senior author or trained staff from The Virginia Institute of Marine Science.  The 

barndoor was easily recognized by its long rostrum, acute angle of the anterior margin of 

the disk, grey ventral surface, and mucous pores (Bigelow and Schroeder, 1953a). 

 Disk width (DW), disk length (DL) and total length (TL) measurements were 

taken from all individuals.  Clasper length (CL) was also taken for all males and 

measured as described for clasper inner length in the FAO species catalogue (Compagno, 

1984).  TL was measured from the tip of the snout to the tip of the tail and was recorded 
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for all but 230 individuals.  For these, TL was calculated from the TL/DW relationship 

(TL = 1.4115 • DW - 0.7741;  n = 2,080;  R2 = 0.99) generated from the remaining 

specimens.  Total length has been used throughout this report for ease in comparison to 

previously published literature on other skate species and elasmobranchs (Walker and 

Hislop, 1998; Frisk et al., 2001). 

Specimens were measured as soon as possible following capture.  After 

measurements were taken, specimens were dissected and sampled or marked and released 

to avoid duplicate records of the same individuals.  Biological samples including 

vertebrae, gastrointestinal and reproductive tracts, and tissue samples were taken from a 

representative sub-sample of sizes and sexes. Reproductive tracts were preserved in 10% 

formalin and examined in a laboratory at the Virginia Institute of Marine Science in 

Gloucester Point, VA. This paper will focus primarily on information from 

morphometrics and the reproductive tracts in addition to preliminary results of an age and 

growth analysis.  A more comprehensive analysis of age and growth, population genetics, 

and food habits will be addressed in later papers.  

 

Maturity 

 The allometric growth and expression of secondary sexual characteristics were 

utilized to determine the reproductive status of each individual and the size at maturity 

for each sex.  Male barndoor skates were considered to be mature based on the following 

criteria:  1)  an abrupt change in clasper length relative to total length (Babel, 1967; 

Struhsaker, 1969; Pratt, 1979);  2)  the presence and degree of coiling in the vas 

deferentia  (Pratt, 1979; Martin and Cailliet, 1988);  3)  the internal morphology and the 
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size, shape and appearance of the testes.  Immature individuals had small flaccid testes 

that were homogenous in appearance while mature individuals had enlarged testes with 

visible differentiated follicles on the dorsal-lateral margins.  Criterion 3 was only utilized 

in cases where coiling in vas deferentia was marginal.   

 The stage of sexual maturity in females was determined by:  1)  the presence of 

developing or ripe eggs in the ovary (Holden, 1975; Pratt, 1979; Martin and Cailliet, 

1988) and 2) the allometric growth of the oviducal gland (Pratt, 1979; Smale and Goosen, 

1999).  Individuals containing five large yolked eggs with a mean size >10mm were 

considered to be mature while individuals that contained white or clear eggs <10mm 

were judged to be immature.  Oviducal gland measurements were taken across the widest 

part of the gland, generally perpendicular to the oviduct.  Maturity was indicated by the 

accelerated growth of this organ as compared to total length. 

 Once individuals were classified as either mature or immature based on the 

criteria described above, the point of 50% maturity was calculated using a logistic probit 

analysis in Minitab (version 4.10.1998, Release 12). The phrase "length at maturity" will 

refer to the point of 50% maturity throughout this paper. 

 

Age and Growth 

 Vertebral samples were taken from a sub-sample of all sizes captured and frozen 

for later analysis.  In the laboratory, samples were thawed, separated into individual 

centra, cleaned and then placed in 70% ETOH for a minimum of 24 hours.  Following 

this treatment, vertebral banding was apparent even with the naked eye suggesting that 

relatively simple techniques such as graphite microtopography (Neer and Cailliet, 2001) 
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and/or oil immersion might be viable. Whole centrum ring counts were recorded on a 

number of specimens and then centra were sectioned through the focus along the central 

longitudinal axis using an Isomet rotary diamond saw (Buehler, 41 Lake Bluff , IL).  If 

the remaining centrum half was large enough it was cut again or simply sanded to leave a 

bow-tie slice through the focus.  Centra sections were then dried between two pieces of 

Plexiglas to prevent warping and mounted to microscope slides using Permount.  

Mounted sections were then sanded and polished with wet sandpaper (320, 400, then 600 

grit) to approximately 0.5 - 1.0 mm.  Slides were then examined under a compound video 

microscope with the Optimus image analysis system (Media Cybernetics, 1999). 

 Banding patterns in the sectioned centra were apparent and similar to that 

described in Daiber (1960) for the clearnose skate, Raja eglanteria and by Waring (1984) 

for the little skate, Raja erinacea.   Alternating wide and narrow bands were observed 

and hypothesized to be indicative of an annual cycle (Figure 2).  The narrow bands, 

henceforth called "growth rings" were counted to determine a putative age for each 

specimen.  The first of these rings was generally faint, occurred at approximately 0.6 - 

0.8 mm from the focus, and at the same location as an angle change and thickening of the 

corpus calcareum.  This was considered to represent a birthmark and was consistent with 

observations from our smallest young-of-year specimens.   

 Growth rings were counted by at least two readers several times until a consensus 

was reached.  Of the vertebrae samples collected from 1999 to 2001, 118 have been 

processed, read by at least two readers and included in this paper. Although growth ring 

counts on whole centra appear consistent, only the results from the sectioned centra are 

presented in this paper.  The effect of sample placement along the vertebral column, 
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reader precision, or validation of the annual nature of the growth rings is in progress.  

Until such time as validation is complete, ages in this paper shall remain putative. 

 Age at maturity was calculated from specimens in which both vertebral banding 

and reproductive tracts were analyzed. A logistic probit analysis in Minitab (version 

4.10.1998, Release 12) was utilized on the age/maturity data (mature individuals were 

assigned a 1 and immature a 0) to estimate the point of 50% maturity.  The von 

Bertalanffy growth function was then fit to all of the age-at length data with the PROC 

NLIN function in SAS (SAS, 1999).  The von Bertalanffy growth function is: 

 

      0[1 exp( ( ))]tL L k t t∞= ⋅ − − ⋅ −

 

Where Lt = length at age 't', L∞ = asymptotic or maximum length, k = growth coefficient, 

and t0 = theoretical age when length equals zero. All of the smaller size classes were well 

represented so back calculation of larger specimens was not necessary.  Growth 

parameters were estimated for the sexes combined due to small sample sizes.   

  

Results 

 The sex ratio of all captured individuals was relatively even: 1,181 females 

(51.1%) and 1,129 males (48.9%).  Total lengths ranged from 20.0 - 133.5 cm with an 

overall mean of 56.6 cm (Figure 3).  Catch rates increased each year over the course of 

the study but further spatial and length-specific analysis are necessary before any 

conclusions can be drawn.   A total length-weight relationship was also generated 

(Weight in grams = 0.001125 • (TL in cm)3.339; n = 28, and R2 = 0.97) but should be used 
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with caution because only 4 individuals greater than 80 cm were included in the weight 

samples.  

 

Maturity 

 A logistic probit analysis on all individuals sampled estimated length at 50% 

maturity at 112.4 cm (95%   CI’s = 110.2 – 114.6 cm; n = 290), however, barndoor skates 

like many elasmobranchs exhibit sexual dimorphism in their development (Struhsaker, 

1969; Holden, 1972; Gelsleichter, 1998).  For the males, clasper lengths (n = 1,126) and 

the examination of reproductive tracts from 148 specimens indicate the onset of 

adolescence at approximately 85-90 cm.  At this point, the ratio of clasper length to total 

length begins to noticeably change and then begins to dramatically increase at around 100 

cm (Figure 4). All specimens less than 103 cm were considered to be immature showing 

only minimal signs of development.  Eighteen individuals between 82 and 113 cm had 

slightly enlarged testes and/or minimal coiling of the vas deferentia and were considered 

to be developing yet still immature. All individuals over 113 cm were mature, having 

highly coiled vas deferentia, large claspers, and enlarged testes with visible follicles.  A 

total of 48 mature males were captured with a calculated length at maturity of 107.9 cm 

with 95% confidence intervals of 105.2 – 110.6 cm (Table 1). 

For the females, oviducal gland measurements and the examination of 142 

reproductive tracts indicate that adolescence in female barndoor skates begins at 

approximately 90-95 cm (Figure 5). The smallest individual with developing or ripe eggs 

indicating first maturity was observed at 114 cm, with 100% maturity occurring at sizes 

greater than 124 cm.  Two females were captured with fully developed encapsulated eggs 
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in each oviduct on November 10th 1999 (124 cm) and on July 13th, 2000 (121 cm).  A 

total of thirty-nine mature individuals were captured with the calculated length at 

maturity for the female barndoor skate of 116.3 cm with 95% confidence intervals of 

114.2 – 118.5 cm (Table 1).  

 

Age and Growth 

 Vertebrae samples were taken from fish that ranged from a 22 cm young-of-year 

male to a 133.5 cm female, the largest specimens captured.  The relationship between TL 

and vertebral radius (VR) was significant supporting the use of vertebral sectioning for 

estimation of growth rates (Figure 6).    The oldest observed individuals were 11 years 

old. A size-at-age plot of all processed vertebral samples (sexes combined) was described 

well by the von Bertalanffy growth model (Figure 7) with parameter estimates of:   L∞ = 

166.3 cm , k = 0.1414 yr-1, and t0 = -1.2912 yr.  

 The results of a probit analysis on those specimens where both age and maturity 

were assessed (n=86) estimated the age at 50% maturity for males and females to be 5.8 

and 6.5 years, respectively.  Although samples sizes were relatively low (male = 51, 

female = 35), the 95% confidence intervals were reasonably tight at 5.3 - 6.3 years for 

males and 6.1 – 6.9 years for females (Table 1).  Substituting our length at maturity 

estimates for Lt in the von Bertalanffy growth model and solving for age (t) then 

generated an alternate estimate of age at maturity.  Estimates from this technique were 

slightly higher but very similar to those from the direct age/maturity probit analysis: 6.1 

and 7.2 years for males and females respectively.  
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Discussion 

Inspection of reproductive tracts and the allometric growth of secondary sexual 

structures provided an easy means for quickly assessing maturity in sampled individuals.  

In male elasmobranchs, the development of claspers coincides with the differentiation of 

the testes (Wourms, 1977) and depending on the species, relative clasper length will 

increase either gradually or abruptly as an individual reaches sexual maturity (Pratt, 

1979). As in several other batoid species, the growth of the claspers in the barndoor skate 

exhibited this type of easily identifiable abrupt change (Babel, 1967; Struhsaker, 1969).  

Accelerated clasper growth was observed between 100 and 120 cm providing obvious 

upper and lower bounds for our maturity estimate.  

 In female elasmobranchs, nearly every structure of the reproductive tract has been 

used as an indication of various stages of sexual development: the size shape and 

appearance of the ovary (Joung and Chen, 1995); the development of the oviduct 

(Springer, 1960), and the oviducal gland (Pratt, 1979; Smale and Goosen, 1999).  In the 

barndoor skate, the allometric growth of the oviducal gland, which is a heart shaped 

organ where sperm may be stored, fertilization occurs and egg cases are produced, was a 

visually apparent and quantifiable indicator of the onset of adolescence.  Significant 

maturation begins around 90 cm and was obviously nearing completion around 115 cm 

when large yolky eggs began appearing in a number of individuals.  

Previously published values for length at maturity of the barndoor skate have been 

equivocal, making a comparison of our data to earlier findings difficult. Richards et al. 

(1963) reported a length at sexual maturity for the barndoor skate of 92 cm, however the 

source, study site, and supporting information for this conclusion were not presented.  
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Casey and Myers (1998) suggested that the barndoor may be similar to the European 

common skate (D. batis) and utilized the life history parameters of this species (age at 

maturity (Amat) = 11 yrs, and fecundity (F) = 47 eggs) in reaching their conclusions. A 

recent stock assessment of the seven skate species found in the north Atlantic United 

States waters (NEFSC, 2000) used a maximum observed length of 136 cm and predictive 

equations to generate estimates of length at maturity (Lmat) of 102 cm and Amat of 8 years 

(Frisk et al., 2001). The results of the present study however show that female barndoor 

skates on the eastern end of Georges Bank reach sexual maturity at a larger size 

(Lmat=116.3) and suggest sexual dimorphism in length at maturity. 

 The findings of this study also suggest that the barndoor skate matures at a similar 

point in their development as other female elasmobranchs.  Holden (1974) suggested that 

the mean length of maturity for female elasmobranchs occurs at 60-90% of their 

asymptotic length. This ratio (Lmat/Lmax) can then be used to compare reproductive life 

history strategies among species. If Lmax is taken to be 152 cm, which is the largest 

individual ever recorded, the female barndoor skates in our study matured at a Lmat/Lmax 

ratio of 0.76.    This is comparable to values reported in other studies that have shown this 

ratio to be 0.74 for Raja eglanteria, 0.73-0.81 for Leucoraja erinacea, and 0.80 for Raja 

clavata (Fitz and Daiber, 1963; Holden, 1974; Waring, 1984).  For the seven species 

common to the northwest Atlantic, observed and predicted Lmat and Lmax values used in 

the 30th SAW (NEFSC, 2000; Frisk et al., 2001) result in  Lmat/Lmax ratios of 0.52-0.81. 

 Although there appears to be some variability in the exact timing of ring and 

growth band formation, vertebral growth patterns have been successfully used in a 

number of different elasmobranch age and growth studies (Holden and Vince, 1973; Pratt 
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and Casey, 1983; Ryland and Ajayi, 1984).  For the barndoor skate, the validation of 

annual ring formation has not been accomplished, however the validity of this technique 

has been demonstrated for at least five other similar skate species.  Studies on Raja 

erinacea (Natanson, 1993), Raja microocellata (Ryland and Ajayi, 1984), Raja 

eglanteria (Gelseichter, 1998), Raja montagui (Ryland and Ajayi, 1984) and Raja clavata 

(Holden and Vince, 1973; Ryland and Ajayi, 1984) have utilized biological markers, such 

as the antibiotic tetracycline, to successfully validate the formation of annual rings.  

Although a few studies on shark species have proposed that bands may form twice a year 

(Pratt and Casey, 1983) or may be related to somatic growth (Natanson and Cailliet, 

1990), there is no evidence from skate species closely related to the barndoor skate to 

suggest any pattern other than an annual cycle.     

 The application of the von Bertalanffy growth model to our age-at-size data 

provides a theoretical maximum total length (L∞) of 166.3 cm and a growth coefficient 

(k) of 0.14 yr-1.  Although these values are comparable to those found in other skate 

species (Table 2) and our samples covered the known size range, L∞ may be slightly 

overestimated due to low sample numbers in the oldest age classes.  If we consider the 

largest barndoor skate ever reported (152 cm) (Bigelow and Schroeder 1953a) and the 

largest individual recorded on Georges Bank since 1963 (136 cm) our estimate of L∞ 

appears slightly high.  When the von Bertalanffy growth model is fit to our data with an 

assumed L∞ of 150 cm the growth coefficient (k) increases to 0.18 yr-1. 

 These empirically derived growth rates and the corresponding age at maturity 

estimates suggest that the barndoor skate may not be as susceptible to fishing pressure as 

recently assumed.  Lacking direct information, Casey and Myers (1998) chose to use the 
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life history parameters of the common skate, D. batis, in their discussion.  The common 

skate reaches a maximum length of nearly 90 cm greater than the barndoor skate 

suggesting k values of near 0.05 and an age at maturity estimate of 11 years. Skate 

species such as Raja clavata, R. microocellata, R. brachyura, or Leucoraja ocellata, 

which reach maximum sizes within 25 - 60 cm of the barndoor skate, would have served 

as important additional comparative species.  Growth coefficients have been estimated 

between 0.07 and 0.22 for these species with estimates of age at maturity of around 5 or 6 

years.  As expected by maximum size alone, the barndoor skate matures at the high end 

of the age range for these smaller skates and well below that of D. batis.   

 Although these types of comparisons can provide guidance in situations where no 

direct information is available, differences in the life history strategies of even closely 

related species can lead to significant variability in parameter estimates.  Stock 

assessments and subsequent management decisions should reflect the potential 

uncertainty inherent in these generalizations. Further research on the barndoor skate 

including histology of reproductive organs and annual ring validation are in progress to 

yield a more comprehensive life history analysis; however, we are confident that both our 

maturity and age-growth estimates will withstand further scrutiny.  

The prudent application of our results to stock assessments and management 

decisions should consider the limitations of our study. Samples were taken from a very 

small area located in both the southern and shallow ends of the species distribution.  At 

higher latitudes or at greater depths where water temperatures would be lower, growth 

may be slowed and age at maturity delayed.  Under these circumstances, our age at 

maturity and growth rate estimates are likely to be negatively biased and might 
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overestimate the potential productivity of a regional population. Another factor that might 

suggest a conservative application of our results is the unknown catchability of our 

sampling gear. Commercial scallop dredges, like many other fishing gears, are likely to 

be biased against catching large individuals.  Although our data do not show a large size 

range within older cohorts, this scenario might result in the underestimation of age at 

maturity.  It is also probable that this same selective fishing pressure over long periods of 

time would result in a reduction of both maximum age and age at maturity in comparison 

to a virgin population.  This theory is supported by the absence of individuals as large as 

those reported by Bigelow and Schroeder (1953a) some 50 years ago. 

Finally, samples were collected during a six-month period of June through 

November. Although there is no evidence to support that any of our parameter estimates 

are biased as a result, the bimodal nature of our length frequency data suggest either size-

specific migrations out of the sampled area or a potential mixing of two different stocks. 

Although one would not expect the effect to be large it is impossible to determine the 

presence, magnitude, or direction of any bias in parameter estimates without further work 

to determine if seasonal migrations are occurring and to what degree.  

 The lack of species-specific information and failure to review historical data has 

allowed the decline of species such as the barndoor skate (Casey and Myers, 1998), 

common skate (Dipturus batis) (Brander, 1981), longnose skate (Dipturus oxyrhinchus) 

(Dulvy et al., 2000) and the white skate (Rostroraja alba) (Dulvy et al., 2000) to occur 

virtually unnoticed for long periods of time. Our results coupled with the relatively large 

numbers of observed animals and the recent increase in research survey biomass 

estimates (NEFSC, 2000) suggest that the barndoor skate may be more resilient to 
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overfishing than previously believed and that the extinction of the species on the eastern 

Georges Bank is not imminent. Regardless, the life history strategy of this elasmobranch 

still renders it much more vulnerable to overharvest than the vast majority of bony fishes. 
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Table 1.  Results of logarithmic probit analysis estimating length and age at 50% 
maturity.   

 

 

Parameter being 

Estimated N 

N 

(mature) 

50% Maturity 

Estimate 

95% Confidence 

Intervals 

Total Length:   (cm) (cm) 

Male 148 48 107.9 105.2 – 110.6 

Female 142 39 116.3  114.2 – 118.5 

Combined 290 87 112.4 110.2 – 114.6 

Age:   (years) (years) 

Male 51 19 5.8 5.3 - 6.3 

Female 35 15 6.5 6.1 - 6.9 

Combined 86 34 6.0 5.7 - 6.3 
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Table 2. Summary of von Bertalanffy growth coefficients (k) and maximum size (L∞) 

estimated for select skate species.  Sexes were combined to generate estimates unless 

otherwise indicated.   

 

Species L∞ (cm) k (yr-1) Reference 

Dipturus batis 253.7 0.06 Du Buit, 1977 

Dipturus laevis 166.3 0.14 This Study 

Raja clavata 139.2 0.09 Ryland and Ajayi, 1984 

 105 0.21 Brander and Palmer, 1985 

 107.0 ♀ 

85.6  ♂ 

0.13 ♀ 

0.21♂ 

Holden, 1972 

 

Raja microcellata 137.0 0.07 Ryland and Ajayi, 1984 

Raja brachyura 118.4 ♀ 

115.0 ♂ 

0.19 ♀ 

0.19 ♂ 

Holden, 1972 

Leucoraja ocellata 114.1 0.14 Simon and Frank, 1996 

Raja eglantera 104.2 ♀ 

95.5  ♂ 

0.17 ♀ 

0.19 ♂ 

Gelsleichter, 1998 

Leucoraja erinacea 52.7 0.35 Waring, 1984 

Raja montagui 97.8 0.15 Ryland and Ajayi, 1984 

 72.8 ♀ 

68.7 ♂ 

0.19 ♀ 

0.18 ♂ 

Holden, 1972 
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FIGURE HEADINGS 

 

Figure 1.  Location of study site (CA-2 is Closed Area II, CA-1 is Closed Area I, NLCA 

is Nantucket Lightship Closed Area).  

Figure 2.  Sectioned vertebral centrum from a 7-year-old barndoor skate.  Arrows 

indicate growth rings.  The slide was painted black to enhance image for 

publication.   

Figure 3.  Length-frequency histogram for all barndoor skates observed on Georges Bank 

from 1999 - 2001.  Samples have been plotted in 5 cm bins (n = 2,310). 

Figure 4.  Allometric relationship of clasper length to total length (n = 1,126).  

Figure 5.  Allometric relationship of mean ova diameter and oviducal gland width to total 

length for the female barndoor skate (n = 142).   

Figure 6.  Relationship of vertebral radius to total length (n = 118). 

Figure 7.  Total length at age plot fitted with the von Bertalanffy growth curve (n = 118). 
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Chapter 3 

 

Ontogenetic and Sex-specific Shifts in the Feeding Habits of the Barndoor Skate 

(Dipturus laevis) on Georges Bank 
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Abstract 

An examination of the stomach contents of the barndoor skate (Dipturus laevis) 

was conducted on 273 individuals caught as bycatch in the commercial scallop fishery on 

Georges Bank.  Samples were collected in 1999, 2000, and 2003 in both Georges Bank 

Closed Area II and the Nantucket Lightship Closed area.  To study ontogenetic shifts in 

prey selection, a length specific analysis was conducted by calculating the mean percent 

weight in each stomach and then averaging these values over 10 cm length bins. A total 

of 31 prey items were identified with the diet dominated by sand shrimp (Crangon 

septemspinosa), the rock crab (Cancer irroratus), the acadian hermit crab (Pagurus 

acadianus) and teleost fish.  The length specific analysis revealed that small juveniles 

(<35 cm total length) were specialized feeders foraging solely on Carid shrimp.  With 

increased size (>35 cm) the diet introduced the rock crab, and at slightly greater lengths 

(>45 cm) the diet began to include the acadian hermit crab.  At above 70 cm, no Carid 

shrimp were found and the prevalence of crustaceans began to decrease with size as the 

prevalence of teleost fish began to increase.  Sex specific differences in food habits were 

observed in mature animals (>105cm) with males feeding primarily on teleost fish 

(~80%) while females maintained a diet of approximately equal amounts of fish and 

crustaceans.  It is hypothesized that sexually dimorphic dentition results in the observed 

sex specific feeding patterns and differential food niche utilization.    
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 The barndoor skate is the largest member of the family Rajidae found in the 

northwestern Atlantic, reaching a maximum length of 152 cm and a weight of 20 kg 

(Bigelow and Schroeder, 1953a).  The species has been reported to range from Cape 

Hatteras to the Grand Banks of Newfoundland, Gulf of St. Lawrence and Nova Scotia 

(Leim and Scott, 1966; McEachran and Musick, 1975).  It ranges from shallow coastal 

waters to depths greater than 450 meters and tolerates water temperatures of 1.2-200 C 

(Bigelow and Schroeder, 1953b; McEachran and Musick, 1975; Kulka et. al., 2002)  

Over the last forty years the marine ecosystems which encompasses much of the 

barndoor skate’s primary historical range (Georges Bank and the Gulf of Maine) has 

experienced major changes (Fogarty and Murowski, 1998).  The decline of many stocks 

and commercially valuable species (i.e. cod and many flatfish) has been attributed to 

fishing pressure.  In the case of the barndoor skate (Dipturus laevis), overfishing was 

reported to be threatening the survival of the species as a whole (Casey and Myers, 

1998).   

 As an elasmobranch, the barndoor skate was believed to be particularly vulnerable 

to fishing pressure due to its large size and presumed late maturation.  Over the last ten 

years, however, a dramatic recovery in the population has been observed (Gedamke 

2006).  Although a reduction in fishing pressure is clearly a critical component in the 

recovery of the species it may only be a single factor in a more complex picture.  To 

accurately evaluate the population dynamics of the barndoor skate, more information 

about its life history and trophic interactions (i.e. predator-prey relationships) must be 

incorporated into our analysis.  
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 The overall life history of the barndoor skate has only recently been investigated 

(Gedamke et al. 2005), yet very little is known about their food habits and how they fit 

into the overall ecosystem.  Understanding the feeding habits of the barndoor skate can 

bring valuable insight into predator-prey relationships and can contribute to future studies 

of trophic interactions (Caddy and Sharp 1986).     Limited information from descriptive 

studies of the Northwest Atlantic fish complex report that the barndoor skate apparently 

subsist mainly on benthic invertebrates as juveniles, while larger individuals eat larger 

and more active prey (Bigelow and Schroeder, 1953b; Mceachran and Musick, 1975; 

NOAA, 2003).  Primary prey is believed to consist of polychaetes, copepods, amphipods, 

isopods, the sand shrimp Crangon septemspinosa, and fish such as spiny dogfish, alewife, 

Atlantic herring, menhaden, hakes, sculpins, cunner, tautog, sand lance, butterfish and 

various flounders.  There is simply not enough data available to assess habitats which are 

critical for the feeding, growth or reproduction of the species.  

The current study will provide vital information to the current closed area 

management strategy on Georges Bank and assist in the designation of essential fish 

habitat defined as “those waters and substrate necessary to fish spawning, breeding, 

feeding, or growth to maturity (16 U.S.C. 1802(10))”.  Our work addresses a research 

need identified in both the 2001 SAFE report (NEFMC, 2001) and the recent essential 

fish habitat source documents (NOAA, 2003) to “investigate trophic interactions between 

skate species in the complex, and between skates and other groundfish.” 

 In 1999, the commercial scallop fleet began a limited access program to the 

Georges Bank closed areas resulting in a unique research opportunity to investigate the 

food habits of the barndoor skate.  This region is a historical area of high abundance and 
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these commercial fishing events provided a platform to sample the large number of 

individuals captured as bycatch.   

 The present study represents the first comprehensive analysis of the food habits of 

the barndoor skate on Georges Bank.  The goals of this study are threefold:  1) to 

establish a basic description of the food habits 2) to evaluate the possible ontogenetic 

shifts in prey items and 3) to explore the possibility that sexual dimorphic mature 

dentition influences prey selection.   

 

Materials and Methods 

All specimens included in this study were collected onboard commercial scallop 

vessels on Georges Bank.  A majority of the specimens were collected in the southern 

portion (south of 410 30" N) of Closed Area II while a limited number were collected 

from the Nantucket Lightship Closed Area (Figure 1).  Both of these areas were closed to 

the use of mobile fishing gear in December of 1994 in an effort to rebuild groundfish 

stocks.  In June of 1999, access to the closed areas began on a limited basis as the 

development of a rotational management strategy was being explored in the commercial 

scallop fishery.   Data was collected on eight trips between June and November in 1999, 

2000 and 2003.  Vessels fished with two 15-foot New Bedford style sea scallop dredges 

(Posgay, 1957) constructed with a 10 inch mesh twine top and either 3.5 or 4 inch ring 

bags.  Gear was towed in 55-73 meters of water at an average speed of 9.2 km/hr.  

Total length, sex, and maturity stage were recorded for all specimens.  Since tooth 

morphology in the males develops from malariform (i.e. plate-like) to cuspidate dentition 

(i.e. pointed teeth) at maturity, the presence or development of this secondary sexual 

 52



characteristic was noted. Entire stomachs were preserved in a solution of 10% phosphate-

buffered formalin and then transferred to 70% ETOH prior to sorting.  Stomachs were 

rinsed to remove all contents and then each prey item was identified to the lowest 

taxonomic level possible.  To assist in the identification of teleost fishes, the museum 

collection at the Virginia Institute of Marine Science was utilized for comparative 

morphology and verification of initial identification.  In addition, many of the 

invertebrates and fish species caught as bycatch were preserved to act as a reference 

library for stomach content identification. The number of individual prey items was also 

recorded.  In cases where prey were unrecognizable by gross morphology, remaining 

body parts (i.e. eyes, vertebrae, shell fragments) were used to make individual prey 

counts.   

Following sorting, samples were weighed to obtain wet weights, placed in a 

drying oven for at least 24 hours, and then reweighed to obtain dry weights.  Plots and 

regressions of wet weights versus dry weights were evaluated to determine any 

differential patterns in the use of one metric versus the other.  For an initial evaluation of 

feeding habits the following commonly used measures were used:  1) percent frequency 

(%F) was calculated as the fraction of stomachs which contained a particular prey item to 

the total number of stomachs sampled  2)  percent abundance (%N) was calculated as the 

fraction of the total number of a particular prey item found in all samples to the total 

number of all prey items in the study, and 3) percent weight (%W) was calculated as the 

total weight of a prey item divided by the weight of all prey items in the study.  These 

measures are pooled across all the samples in the study and are difficult to interpret and 

must be used cautiously (Chipps and Garvey, 2006; Graham et al. 2006).   
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Since our study contained samples from all size classes, these common measures 

were only used to identify which prey items were likely to be important and then a more 

detailed length based analysis was performed.  Samples were pooled over 10 cm bins and 

the mean percent abundance (%MN) and mean percent weight (%MW) were calculated 

and used as the primary tool to evaluate feeding habits (Graham et al. 2006).   These were 

calculated as follows: 1) for each individual the weight (or number) of each prey item 

was divided by the total weight (or number) of all contents in that particular stomach to 

obtain percent weight (%w) or percent abundance (%n) of each prey item in each 

individual sample 2) the mean of these values was then calculated for each 10 cm bin to 

obtain the mean percent weight (%MW) or mean percent abundance (%MN).     

The %MW and %MN were then plotted against the midpoint of each length bin to 

determine trends in food habits, while plots of %w and %n against the total length of that 

individual provided a visual representation of the variability in our samples.   Ontogenetic 

shifts in food habits were immediately obvious and prey items were grouped into larger 

sub-categories (shrimp, crustacean, and fish) and the analysis repeated.      

 

 

Results 

Stomach samples were taken from a total of 273 individuals, of which 267 

(97.8%) contained prey items.   A majority (N=256) of the specimens were collected in 

the southern portion (south of 410 30" N) of Closed Area II while a limited number 

(N=17) were collected from the Nantucket Lightship Closed Area.  Samples were taken 

from 137 females and 136 males ranging from 20 cm to 133.5 cm (Figure 2).   
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For all prey items, linear regressions of wet versus dry weights showed no pattern 

to the residuals and only wet weights will be referred to throughout the rest of this 

manuscript.  A total of 31 prey items were recorded (Table 1) with two major prey groups 

dominating the diet:  crustaceans and teleost fish.  Three major individual prey items 

were also identified: the sand shrimp Crangon septemspinosa, the acadian hermit crab 

Pagurus acadianus, and the rock crab Cancer irroratus.   

The length specific analysis showed clear ontogentic shifts in diet.  Diets of the 

smallest individuals (20-35 cm) were dominated by a single species indicating 

specialization at this life stage.  As size increased to 70 cm, the number of prey items 

increased to a mean of near 3 (ranging from 1.8 to 2.8) and remained relatively constant 

for the remainder of the size classes (Figure 3).    

Until a size of approximately 35 cm, individual stomach samples contained only 

one species of Carid shrimp.  Samples taken from Georges Bank Closed Area II 

contained only Crangon septemspinosa while those samples from the Nantucket 

Lightship Closed Area contained only Dichelopandalus leptocerus.   A plot of the %w of 

the three major prey items shows a clear shift from the utilization of these small shrimp to 

include the rock crab Cancer irroratus  at approximately 35 cm (Figure 4).  At around 45 

cm, prey begins to include the acadian hermit crab, Pagurus acadianus (Figure 4).  At 

approximately 70 cm, no Carid shrimp are found and the prevalence of the rock crab 

begins to decline in both males and females.  At above 105 cm the diet of females 

continues to contain a significant amount of the acadian hermit crab while males appear 

to be utilizing a different food source. 
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Based on these initial results we sub-grouped all prey items into three categories: 

shrimp (containing all three species of Carid shrimp), crustaceans (except Carid shrimp), 

and fish (all teleosts).  The patterns exhibited by the three main prey items persist and a 

difference in food preferences is apparent between the larger males and females.  Both 

sexes utilize shrimp as the primary food source at the smallest sizes and begin to include 

crustaceans in their diet.  Above 80 cm, male stomachs begin to contain slightly more 

teleost fish than do those of the females (Figure 5).  At above 105 cm, the differences in 

diet between the sexes becomes more apparent (Figure 6).   

For comparisons to other studies, and to show the importance of individual prey 

items, we recalculated %N, %W, and %F considering our new understanding of the 

ontogenetic shifts in food habits.  Data was pooled over four size classes (0-35 cm, 35-70, 

70-105, and > 105 cm) and the results are consistent with our conclusions from the 

graphical analysis just presented (Tables 2-5).   

  

Discussion 

The diet of Dipturus laevis was dominated by a limited number of prey items with 

clear ontogenetic shifts in food habits.  Smaller animals relied entirely on benthic 

invertebrates while larger animals began including more fish in their diet.  Previous 

studies on skates have elucidated similar patterns but the behavior does not appear to be 

consistent, even for species studied in similar geographic regions.  In a study of six skate 

species off the South African coast, Small and Cowley (1992) described three species as 

crustacean feeders (Raja miraletus, Raja clavata and Cruriraja parcomaculata), one as a 

specialist piscivore throughout its size range (Raja alba) and two having ontogenetic 
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changes in feeding habits.  These two species, Raja wallacei and Raja pullopunctata, 

exhibited a pattern consistent with our results and fed primarily on crustaceans when 

small and then became mainly piscivorous when large.   Ontogenetic changes in diet have 

also been described for a number of other batoids (McEachran et al. 1976; Ajayi 1982; 

Orlov, 1998; Platell et al. 1998) and have been attributed to morphological constraints 

(e.g. gape limited, tooth morphology) or better mobility, strength and overall foraging 

ability of larger animals.   

Our results for smaller individuals would appear to support the hypothesis of 

morphological constraints as distinct shifts in diet were observed.  The smallest 

individuals were specialized feeders foraging entirely on Carid shrimp although other 

small prey such as crabs (Cancer sp.) would have been available.  Only when individuals 

were greater than 35 cm did they include these crabs in their diet.  A similar shift to 

include hermit crabs (Pagurus acadianus) was observed at approximately 45 cm.  

Considering that all three of these prey are relatively slow moving, relatively common (in 

our study area), and shouldn’t require great predatory swimming speeds to capture, there 

must be other factors limiting the barndoor skate from utilizing these food sources. 

Although the size of the mouth may play a role initially, many of the smaller Cancer sp. 

crabs and Pagurus acadianus crabs should be available as prey items.  The simplest, but 

not the only, explanation may be found in the relationship between growth and increased 

strength.  The sequential addition of these prey items may be a result of the strength 

required to crush thicker shelled prey.  It is important to note here that only a couple shell 

fragments were observed in our samples indicating that the shells of Pagurus acadianus 

were crushed prior to ingestion of the prey.   
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The most interesting aspect of the ontogenetic changes in feeding habits we 

observed is the sex specific habits of the largest animals.  Above 105 cm males appeared 

to preferentially utilize teleost fish (80% by weight) rather than benthic invertebrates.  

The diet of large females, on the other hand, was comprised of approximately equal 

weights of both benthic invertebrates and fish.  This sex specific change in feeding habits 

was evident at approximately the same size as maturity.  Although there are a number of 

potential causes, the correlation between the size at maturity (males at 108 cm, females at 

116 cm; Gedamke et al. 2005) and divergent sex-specific feeding habits is striking.   One 

factor which is likely to play a role is a sexual dimorphism in tooth structure.  At 

maturity, females retain their malariform (i.e. plate like) teeth while males develop 

cuspidate dentition (i.e. pointed teeth).  The dimorphism in tooth structure in the barndoor 

skate was apparent by even a cursory examination of sampled jaws.  We noted that the 

development of cuspidate dentition in the males coincided with the development of other 

secondary sexual characteristics (i.e. allometric growth of claspers and development of 

alar thorns).   

In the elasmobranchs, the role of sexual dimorphic dentition is generally 

attributed to the reproductive behavior of the group and ability of males to grasp and hold 

females during mating.   Males will bite prospective mates in courtship behavior and 

during mating to facilitate insertion of the clasper and to maintain intromission (Springer, 

1960; Tricas and LeFeuvre, 1985; Carrier et al., 1994).  This behavior has been 

documented in a number of the batoids including: the atlantic stingray Dasyatis sabina 

(Kajiura et al., 2000), the eagle ray Aetobatis narinari (Tricas, 1980), the roughtail 

stingray Dasyatis centroura (Reed and Gilmore, 1981), and the round stingray Urolophus 
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halleri (Nordell, 1994).  Evolutionarily, the development of sexually dimorphic tooth 

morphology was likely to have evolved from not only the selective pressures of 

maximizing reproductive success but also from the selective pressures on both sexes for 

feeding efficiency.   

It has been suggested that the strongly dimorphic tooth morphology in the Rajids   

represents differential niche utilization between the sexes (Feduccia and Slaughter, 1974).  

This phenomenon has been demonstrated in bird, anole and freshwater fish populations 

and results in reduced intraspecific competition for food, benefiting the population as a 

whole (Feduccia and Slaughter, 1974).    A number of authors studying the food habits of 

skates have suggested or shown that dentition plays a role in feeding habits (McEachran 

et al. 1976; Ebert et al. 1991; Small and Cowley, 1992) but as far as the authors of this 

paper are aware, this has not been confirmed for any elasmobranch.   

Although the correlation between divergent sex specific feeding habits and 

maturity in the barndoor is evident, we have not proven the cause.  Although sexually 

dimorphic tooth structure is the simplest and likely explanation, this difference could be 

due to other factors.  For example, mature females may simply have different dietary 

needs than males or the benthic feeding strategy of females conserves energy better 

utilized for reproduction.   

In interpreting and generalizing the results of our study it is important to note 

three aspects of our methodology:  1) all samples were collected from a small geographic 

area 2) all samples were collected between June and November and 3) samples were 

collected on commercial vessels actively fishing in the region.   The small geographic 

area makes the interpretation of our results easier due to a limited number of prey species.  
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Greater variability would have been observed if samples were taken from a larger  

geographic area.  For example, our samples from the Nantucket Light Ship closed area 

contained a different species of Carid shrimp than those from Georges Bank Closed Area 

II.  Both of the prey species, Crangon septemspinosa and Dichelopandalus leptocerus, 

are morphologically similar and only reach maximum carapace lengths of 12 and 20 mm, 

respectively (Squires 1990).  In each area, the smallest barndoor skates were feeding on 

only one species exhibiting clear specialization. If samples had been taken from a larger 

number of areas, a larger number of prey species would have been recorded for each size 

class and interpreting the results would have been more difficult.  As such, food habit 

studies should carefully consider the spatial aspects of sampling and resulting differences 

in prey availability. 

Similarly, samples were only collected between June and November.  Feeding 

patterns may be different at other times of the year.  In fact, even our hypothesis about 

tooth morphology may have been more difficult to address if samples had been pooled 

over the entire year.  In the Atlantic stingray, Dasyatis Sabina, it has been shown that the 

malariform morphology of the teeth in females is stable while male dentition shows a 

periodic shift from a female-like malariform to a recurved cuspidate form during the 

reproductive season (Kajiura and Tricas 1996).   

Finally, while the opportunity to sample onboard commercial vessels allowed us 

to obtain a large number of samples, a significant amount of bycatch was also introduced 

into the environment.  Although this may have facilitated the capture of teleost prey 

utilized by our sampled barndoor skate population, the differential utilization by males 
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and females would have persisted.  Males and females were captured simultaneously in 

very similar abundances, and prey availability would have been constant for both sexes.   

The analytical methods applied in this study were carefully chosen to not only 

address the problems with pooling data over large spatial scales, but also to deal with the 

significant limitations of pooling data over a wide range of size classes.   No one method 

can provide an accurate picture of the feeding habits of a species (Hyslop, 1980).   Our 

application of the common metrics (%N, %W, and %F) to the entire sample set allowed 

us to identify common prey items but the details of size-specific prey selection were 

obscured.   Only after a careful analysis of length-specific feeding patterns and re-

analysis over distinct size classes did the ontogenetic shifts in feeding habits become 

apparent.  The combined use of a length-specific graphic analysis and pooled metrics not 

only allowed for the primary population-wide food sources to be identified but also 

extracted a compelling picture of the specificity of food preferences at the different life 

stages of the barndoor skate.     
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Table 1. Dietary composition of all barndoor skates Dipturus laevis sampled (n=273) on 
Georges Bank, displayed as percent by number (%N), weight (% W), and frequency of 
occurrence (% F).  
 
 

 

Prey items %N %W %FO 
Teleost fishes 
     Scomber scombrus 
     Clupea harengus 
     Myoxocephalus sp.  
     Urophycis sp. 
     Urophycis chuss 
     Macrozoarces americanus 
     Limanda ferruginea 
     Paralichthys dentatus 
     Peprilus triacanthus 
     Hemitripterus americanus 
     Paralichthys oblongus 
     Unidentified fish 
     Unidentified flatfish 
Crustacea 
  Carid shrimps 
     Crangon septemspinosa 
     Pandalus propinquus 
     Dichelopandalus leptocerus 
  Pagurid crabs      
     Pagurus acadianus 
     Pagurus pubescens 
  Cancer crabs    
     Cancer irroratus 
     Cancer borealis  
     Cancer sp. 
  Other 
     Unidentified crab 
     Unidentified decapod 
     Unidentified amphipod 
     Unidentified isopod 
     Unidentified barnacle 
Mollusca 
     Unidentified snail 
     Unidentified bivalve 
Nematoda 
     Unidentified nematode 
Trematoda 
     Unidentified trematode 
Unidentified Organic Matter 

 
0.02 
0.59 
0.43 
0.21 
0.12 
0.14 
0.15 
0.02 
0.02 
0.05 
0.07 
0.05 
0.17 

 
 

34.61 
0.66 
2.44 

 
20.79 
0.05 

 
29.60 
2.13 
0.12 

 
0.43 
0.28 
1.11 
0.66 
0.02 

 
1.07 
0.05 

 
2.47 

 
0.07 
0.92 

 
 
 
 
 

 
0.33 

10.90 
5.15 
6.40 
5.91 

14.82 
2.51 
0.98 
0.34 
1.38 
1.72 
3.32 
2.94 

 
 

1.64 
0.01 
0.12 

 
14.43 
0.01 

 
17.83 
4.14 
0.06 

 
0.31 
0.19 
0.08 
0.04 
0.00 

 
0.08 
0.00 

 
0.02 

 
0.00 
3.62 

 

 
0.37 
6.59 
5.13 
3.30 
1.10 
2.20 
0.73 
0.37 
0.37 
0.73 
0.73 
7.33 
2.20 

 
 

38.83 
2.20 
4.76 

 
38.46 
0.73 

 
54.95 
6.59 
0.37 

 
4.40 
4.40 
1.83 
1.83 
0.37 

 
8.06 
0.73 

 
13.19 

 
0.37 

14.29 
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Table 2. Dietary composition of barndoor skates Dipturus laevis (0 – 35 cm total length) 
sampled (n=25) on Georges Bank, displayed as percent by number (%N), weight (%W), 
and frequency of occurrence (% F). 

%N  %W  %FO  
Prey items M F  M F  M F 
Crustacea 
  Carid shrimps 
     Crangon septemspinosa 
     Dichelopandalus leptocerus 
  Cancer crabs    
     Cancer irroratus 
  Other 
     Unidentified crab 
Nematoda 
     Unidentified nematode 
 
 
 
 

 
 

65.35 
33.66 

 
- 
 

0.99 
 
- 

 
 

80.53 
16.81 

 
0.88 

 
- 
 

1.77 
 
 

 
 

 
 

89.70 
8.37 

 
1.84 

 
- 
 

0.09 
 

 
 

50.94 
48.21 

 
- 
 

0.85 
 
- 
 

 
 
 

 
 

53.33 
26.67 

 
- 
 

6.67 
 
- 
 

 
 

70.00 
30.00 

 
10.00 

 
- 
 

10.00 
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Table 3. Dietary composition of barndoor skates Dipturus laevis (35 – 70 cm total 
length) sampled (n=126) on Georges Bank, displayed as percent by number (%N), weight 
(%W), and frequency of occurrence (% F). 
 
 

%N  %W  %FO  
Prey items M F  M F  M F 
Teleost fishes 
     Unidentified fish 
     Unidentified flatfish 
Crustacea 
  Carid shrimps 
     Crangon septemspinosa 
     Pandalus propinquus 
     Dichelopandalus leptocerus 
  Pagurid crabs      
     Pagurus acadianus 
     Pagurus pubescens 
  Cancer crabs    
     Cancer irroratus 
     Cancer borealis  
     Cancer sp. 
  Other 
     Unidentified crab 
     Unidentified isopod 
Mollusca 
     Unidentified snail 
     Unidentified bivalve 
Nematoda 
     Unidentified nematode 
Unidentified Organic Matter 

 
0.08 

- 
 
 

53.97 
0.08 
1.57 

 
5.54 

- 
 

35.29 
1.32 
0.41 

 
0.08 

- 
 

0.17 
0.08 

 
0.91 
0.50 

 

 
0.07 
0.14 

 
 

42.94 
1.63 
1.63 

 
13.50 
0.07 

 
33.72 
2.17 

- 
 

0.20 
0.34 

 
0.81 

- 
 

2.37 
0.41 

 

 
 

 
0.00 

- 
 
 

18.68 
0.09 
0.89 

 
8.78 

- 
 

62.51 
2.01 
1.29 

 
0.15 

- 
 

0.03 
0.03 

 
0.08 
5.46 

 
 

 
0.05 
0.03 

 
 

9.86 
0.09 
0.23 

 
23.28 
0.04 

 
60.27 
4.56 

- 
 

0.01 
0.05 

 
0.07 

- 
 

0.05 
1.40 

 
 

  
1.72 

- 
 
 

74.14 
24.14 
1.72 

 
24.14 

- 
 

77.59 
3.45 
1.72 

 
1.72 

- 
 

1.72 
1.72 

 
10.34 
10.34 

 
1.45 
1.45 

 
 

60.87 
4.35 
4.35 

 
40.58 
1.45 

 
69.57 
4.35 

- 
 

1.45 
2.90 

 
8.70 

- 
 

17.39 
8.70 
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Table 4. Dietary composition of barndoor skates Dipturus laevis (70 – 105 cm total 
length) sampled (n=52) on Georges Bank, displayed as percent by number (%N), weight 
(%W), and frequency of occurrence (% F). 
 

%N  %W  %FO  
Prey items M F  M F  M F 
Teleost fishes 
     Clupea harengus 
     Myoxocephalus sp.  
     Urophycis sp. 
     Urophycis chuss 
     Macrozoarces americanus 
     Peprilus triacanthus 
     Hemitripterus americanus 
     Unidentified fish 
Crustacea 
  Carid shrimps 
     Crangon septemspinosa 
     Pandalus propinquus 
     Dichelopandalus leptocerus 
  Pagurid crabs      
     Pagurus acadianus 
  Cancer crabs    
     Cancer irroratus 
     Cancer borealis  
  Other 
     Unidentified crab 
     Unidentified decapod 
Mollusca 
     Unidentified snail 
     Unidentified bivalve 
Nematoda 
     Unidentified nematode 
Unidentified Organic Matter 
 
 
 

 
0.78 
0.39 
0.39 
0.58 
0.19 
0.19 

- 
0.97 

 
 

1.17 
- 
- 
 

49.12 
 

34.50 
1.36 

 
0.19 
0.39 

 
2.53 
0.19 

 
5.26 
1.75 

 
1.00 

- 
1.00 

- 
- 
- 

0.50 
- 
 
 

2.00 
0.50 
1.50 

 
32.00 

 
41.50 
10.00 

 
1.00 
1.00 

 
2.00 

- 
 

1.00 
5.00 

 

 
 

 
10.56 
4.67 
3.96 

11.08 
26.31 
1.58 

- 
1.94 

 
 

0.03 
- 
- 
 

15.83 
 

18.55 
1.11 

 
0.28 
0.01 

 
0.05 
0.00 

 
0.01 
4.01 

 
 
 
 

 
8.38 

- 
12.60 

- 
- 
- 

14.66 
- 
 
 

0.02 
0.01 
0.17 

 
10.46 

 
28.38 
14.68 

 
0.28 
0.01 

 
0.19 

- 
 

0.01 
10.13 

 
 
 

 
5.03 
6.06 
6.06 
3.03 
3.03 
3.03 

- 
12.12 

 
 

9.09 
- 
- 
 

57.58 
 

63.64 
9.09 

 
3.03 
6.06 

 
15.15 
3.03 

 
24.24 
27.27 

 
11.11 

- 
11.11 

- 
- 
- 

5.56 
- 
 
 

5.56 
5.56 
5.56 

 
66.67 

 
77.78 
22.22 

 
11.11 
11.11 

 
11.11 

- 
 

11.11 
55.56 
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Table 5. Dietary composition of barndoor skates Dipturus laevis (> 105 cm total length) 
sampled (n=70) on Georges Bank, displayed as percent by number (%N), weight (%W), 
and frequency of occurrence (% F). 

%N  %W  %FO  
Prey items M F  M F  M F 
Teleost fishes 
     Scomber scombrus 
     Clupea harengus 
     Myoxocephalus sp.  
     Urophycis sp. 
     Urophycis chuss 
     Macrozoarces americanus 
     Limanda ferruginea 
     Paralichthys dentatus 
     Hemitripterus americanus 
     Paralichthys oblongus 
     Unidentified fish 
     Unidentified flatfish 
Crustacea 
  Carid shrimps 
     Crangon septemspinosa 
     Pandalus propinquus 
     Dichelopandalus leptocerus 
  Pagurid crabs      
     Pagurus acadianus 
 Cancer crabs    
     Cancer irroratus 
     Cancer borealis  
  Other 
     Unidentified crab 
     Unidentified decapod 
     Unidentified amphipod 
     Unidentified isopod 
     Unidentified barnacle 
Mollusca 
     Unidentified snail 
Nematoda 
     Unidentified nematode 
Trematoda 
     Unidentified trematode 
Unidentified Organic Matter 
 
 
 

 
0.50 
3.94 
6.97 
1.49 
1.00 
1.00 
0.50 

- 
0.50 
1.49 
5.47 
1.49 

 
 

2.99 
1.00 
1.99 

 
8.96 

 
8.96 
0.50 

 
3.48 
1.00 

23.38 
9.95 

- 
 
- 
 

10.95 
 

1.49 
1.00 

 
- 

2.7 
0.49 
0.49 

- 
0.74 
0.25 
0.25 

- 
- 

1.97 
0.49 

 
 

0.25 
- 
- 
 

68.06 
 

11.30 
3.44 

 
0.74 
1.47 

- 
0.74 
0.25 

 
3.44 

 
1.23 

 
- 

1.47 

 
 

 
1.48 

13.32 
13.36 
10.34 
15.68 
15.42 
4.29 

- 
0.13 
7.65 
8.06 
4.89 

 
 

0.00 
0.01 
0.03 

 
1.02 

 
2.87 
0.23 

 
0.47 
0.01 
0.35 
0.14 

- 
 
- 
 

0.00 
 

0.00 
0.25 

 
- 

13.92 
3.25 
5.88 

- 
16.33 
4.42 
2.79 

- 
- 

5.15 
5.26 

 
 

0.00 
- 
- 
 

22.11 
 

9.81 
5.92 

 
0.33 
0.52 

- 
0.01 
0.01 

 
0.13 

 
0.03 

 
- 

4.11 

 
 
 

 
3.33 

23.33 
33.33 
10.00 
6.67 
6.67 
3.33 

- 
3.33 
6.67 

36.66 
10.00 

 
 

3.33 
3.33 
3.33 

 
20.00 

 
20.00 
3.33 

 
13.33 
6.67 

16.67 
6.67 

- 
 
- 
 

13.33 
 

3.33 
6.67 

 
- 

20.00 
5.00 
5.00 

- 
7.5 
2.5 
2.5 
- 
- 

20.00 
5.00 

 
 

2.50 
- 
- 
 

65.00 
 

37.50 
12.50 

 
5.00 
15.00 

- 
2.50 
2.50 

 
20.00 

 
7.50 

 
- 

15.00 
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Figure 1.  Sample Locations.  CA-2 is Georges Bank closed Area II, CA-1 is Georges Bank 
Closed Area I, and NLCA is Nantucket Lightship Closed Area 
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Figure 2.  Number of samples by sex for each 10 cm length bin.   
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Figure 3.  Mean number of prey items per stomach in each 10 cm length bins.  
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Figure 4.  Percent by weight of three major prey items. A) Crangon septemspinosa B) Cancer irroratus C) 
Pagurus acadianus. Solid circles (males) and diamonds (females) represent percent weight in individual 
stomachs. Solid line (male) and dashed line (female) represent mean percent weight of each length bin. 
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Figure 5.  Mean percent weight of each prey sub-category for each 10 cm length bin 
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Figure 6.  Mean percent weight of each prey sub-category, by sex, for each 10 cm length bin 



 

 

Chapter 4 

 

Estimating Mortality from Mean Length Data in Non-equilibrium Situations, with 

Application to the Assessment of Goosefish (Lophius americanus) 
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Abstract 

The Beverton-Holt length-based mortality estimator has received widespread use 

primarily due to its applicability in data-limited situations.  The mean length of animals 

fully vulnerable to the sampling gear can be used to estimate total mortality using only 

basic growth parameters and a known length at first capture.  This method requires 

equilibrium conditions because the mean length of a population will change only 

gradually following a change in mortality.  In this study, we derive the transitional 

behavior of the mean length statistic for use in non-equilibrium conditions.  We 

investigate conditions affecting the reliability of the Beverton-Holt results and then 

develop a new procedure that allows a series of mortality rates to be estimated from mean 

length data representing non-equilibrium conditions in multiple years.  We then examine 

the goosefish (Lophius americanus) assessment which was criticized for its use of the 

Beverton-Holt estimator under non-equilibrium conditions.  Using data from the 1963-

2002 National Marine Fisheries Service annual fall groundfish surveys off the Northeast 

United States, and assuming a single change in total mortality, we estimated using the 

method of maximum-likelihood that total mortality of goosefish in the southern 

assessment region increased from 0.31 to 0.60 yr-1 in 1977.  Estimates of the new 

mortality rate made 3 or more years after the change were relatively stable and ranged 

only from 0.55 to 0.71 yr-1 while estimates from the standard Beverton-Holt approach 

ranged from 0.37 to 1.1 yr-1.  The results for goosefish in the northern assessment region 

showed changes in total mortality from 0.14 to 0.29 yr-1 in 1978 and then to 0.55 yr-1 in 

1987.    The new, non-equilibrium estimator allows a change in mortality to be 

characterized reliably several years faster than if the Beverton-Holt estimator is used.   
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 Baranov (1918, cited in Ricker (1975)) was apparently the first to deduce that 

equilibrium mean length in a fish population is inversely related to the mortality rate 

experienced by the population. Beverton and Holt (1956, 1957) observed the same thing 

for a more realistic situation where length is an asymptotic, rather than linear, function of 

time. They also derived an expression for estimating the total instantaneous mortality 

rate, Z, from the mean length, L . 

 The Beverton-Holt mortality estimator has received widespread use, especially in 

data-limited situations, because the only required information is the von Bertalanffy 

growth parameters K and L∞, the so-called length of first capture (smallest size at which 

animals are fully vulnerable to the fishery and to the sampling gear), Lc, and the mean 

length of the animals above the length Lc. 

 The Beverton-Holt mortality estimator is based on the assumption of equilibrium 

conditions. Hilborn and Walters (1992, p. 426) presented a graph showing the transitional 

behavior of a similar estimator when the population experiences a change in total 

mortality to a higher level. Essentially, if the mortality estimator is applied continually to 

mean length data over time, the resulting estimates will show a gradual increase over 

time and will approach the true (new) value as the new equilibrium condition is 

approached.  Hilborn and Walters used this example merely to illustrate the pitfalls of 

applying analytical techniques based on assumptions of equilibrium to situations where 

the assumption is not met. They did not present any expression to describe the 

transitional behavior of the estimator and obtained their results by simulation. 

 In this study, we derive the transitional behavior of the mean length statistic for 

use in non-equilibrium conditions.  We investigate conditions affecting the reliability of 
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the Beverton-Holt results and then develop a new procedure that allows a series of 

mortality rates to be estimated from mean length data representing non-equilibrium 

conditions from multiple years.  We then examine the northeast United States goosefish 

(Lophius americanus) assessment which was criticized for its use of the Beverton-Holt 

estimator under non-equilibrium conditions.  Data from the 1963-2002 National Marine 

Fisheries Service (NMFS) annual fall groundfish surveys off the Northeast United States 

were analyzed using the method of maximum-likelihood to estimate the years in which 

changes in mortality occurred, and to reconstruct the mortality history.    

 

The Beverton-Holt Estimator 

 Assume deterministic asymptotic growth as described by the von Bertalanffy 

equation 

   )))(exp(1( ot ttKLL −−−= ∞       (1) 

where Lt is the length at age t, and and tKL ,∞ o are the parameters. Also assume that the 

instantaneous total mortality rate is constant over time and over age for all ages t > tc, 

where tc is the age at which animals are fully vulnerable to the fishery and to the 

sampling gear. Denote this mortality rate by Z yr-1. Further, assume that recruitment is 

continuous over time at constant rate R. The mean length of those animals above the 

length Lc corresponding to the age tc is  

   

∫
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where Lt is given by (1) and Nt = R exp(-Z(t-tc)). Performing the integrations in (2) and 

simplifying yields 

   )))(exp(1( oc ttK
KZ

ZLL −−
+

−= ∞   .    

 (3) 

Equation (3) is easily solved for the mortality rate. Thus, 

   
cLL
LLKZ

−
−

= ∞ )(    .        

 (4) 

Note that the parameter to has been eliminated from the solution through algebraic 

manipulation using equation (1). 

 There are six assumptions behind this method.   

1) Asymptotic growth with known parameters K and L∞ which are constant over 

time. 

2) No individual variability in growth. 

3) Constant and continuous recruitment over time. 

4) Mortality rate is constant with age for all ages t > tc. 

5) Mortality rate is constant over time.  

6) Population is in equilibrium (i.e., enough time has passed following any 

change in mortality that mean length now reflects the new mortality level).  

Some of these assumptions will be considered further in the discussion section. 
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Transitional Behavior 

 We now deal with the situation when assumption 6 is violated.  Suppose the mean 

length in a population is determined d years after a permanent change in total mortality 

from Z1 to Z2 yr-1. Let g = tc + d. The mean length in the population d years after the 

change in mortality is 

  
2 2 1

2 2 1

exp( ( ) exp( )exp( ( ))

exp( ( )) exp( )exp( ( ))

c

c

g

c t t
t g

g

c
t g

R Z t t L dt R Z d Z t g L dt
L

R Z t t dt R Z d Z t g dt

∞

∞

− − + − − −

=
− − + − − −

∫ ∫

∫ ∫
 .   (5) 

In the numerator and the denominator, the integrals on the left represent fish recruited 

after the change in mortality – these animals have experienced just the mortality rate Z2. 

The integrals on the right represent fish that were recruited before the change in mortality 

– these fish have experienced both the old and the new mortality rates. 

 After integration and simplification (see Appendix A) we obtain 

 1 2 1 2 1 2

1 2 1 2 1 2

( ){ ( )exp( ( ) )} 
( )( )( ( )exp( ))

cZ Z L L Z K Z Z Z K dL L
Z K Z K Z Z Z Z d

∞
∞

− + + − − +
= −

+ + + − −
.  (6) 

Note that when d = 0 equation (6) provides the equilibrium mean length for the case 

where Z = Z1, as expected. As d approaches infinity, equation (6) provides results 

approaching the equilibrium mean length when Z = Z2, as expected. And when Z1 = Z2, 

equation (6) gives the same result as equation (3).  In appendix B, we generalize 

equations (5) and (6) to allow for multiple changes in mortality rate over time.  

Thus, for any amount of elapsed time after a known change in mortality, we can 

determine the mean length in the population and, by inserting this value into equation (4), 

we can determine how the Beverton-Holt estimator responds.  We examined the effect of 
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the von Bertalanffy parameter K on the estimates for the case where Z increased suddenl

from 0.4 to 1.0 yr

y 

g 

d Lc constant, has no effect on the rate at which the 

estimat

 

ing 

h.  

f the larger older animals has an immediate affect on the mean length of the 

population.  

Estima

d 

se 

 sity function of a 

normally distributed sample mean

-1 (Figure 1). The estimates approach the new equilibrium value faster 

when K is higher. Thus, after three years, the estimate reflects 76% of the increase in Z 

when K = 0.1, 83% of the increase when K = 0.5, and 87% when K = 1.0 yr-1.  Changin

the value of L∞, while holding K an

or approaches equilibrium. 

The time to reach equilibrium is also dependant on the magnitude and direction of

the change in mortality (Table 1). The time to reach equilibrium is greatest when fish

pressure has been significantly reduced to near virgin levels.  In this scenario,  only 

growth over time can restore the original population structure and affect the mean lengt

On the other hand, the response to increases in fishing pressure occurs more rapidly as 

the removal o

 

tion in non-equilibrium situations 

Estimation of mortality rates in non-equilibrium situations can be accomplishe

by selecting the year of change and the value of Z1 and Z2 that cause predicted mean 

lengths from equation (6) to best match a time series of estimated mean lengths.  We u

the method of maximum likelihood estimation.  The probability den

x , when the sample size is m, is 
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The product likelihood function ( Λ ) for n years of observed mean lengths results by 

substitution with (6):  µ = E( L ),  σ2  = Var(L) = variance of lengths that are greater than 

Lc. Thus, 
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2
2

2
2
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y pred y

y
n
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m
L Lm

e     (8) 

 

where my is the number of fish greater than size Lc measured in year y, yL  is the 

observed mean length in year y, and Lpred,y is the mean length computed using equation 

(6) or, more generally, from Appendix equation (B1).  The log-likelihood is proportional 

to   

 

( ) 2
,2

1

1ln ln [ ]
2

( ) σ
σ =

− ⋅ − ⋅ ⋅ −Λ ∝ ∑ y

n

y pred
y

n m L yL   .    (9) 

 

Equation (9) was maximized, and confidence intervals generated for each variable, using 

the PROC NLP procedure in SAS version 8 (SAS, 1999).  The year in which the 

mortality change occurred was specified and Z1, Z2, and the variance ( 2σ ) were 

estimated.  If the year in which a change in mortality occurs is unknown the model can be 

fitted separately for each year where the change is possible.  The year of change which 

maximizes the likelihood provides the maximum likelihood estimates.  Alternatively, the 

year of change can be estimated along with the other parameters. 
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Application to the Assessment of Goosefish  

Length-frequency data from the NMFS annual fall groundfish trawl surveys were 

obtained for two defined management zones.  Although this survey was not designed 

specifically for the purpose of sampling goosefish, and sample sizes are relatively low, 

changes in the mean length of goosefish have been observed over the 40 year time series.  

The survey is described in detail in NEFSC (2002).  In the NMFS assessment of 

goosefish in the northeast United States, estimates of mortality from the Beverton-Holt 

length-based method, using the NMFS survey data, have been used to describe the 

historical pattern in fishing mortality rates (NEFSC 2002).  As in the NMFS assessment, 

we analyze data from the Mid-Atlantic Bight (southern management region) and from the 

Gulf of Maine, Southern New England, and Georges Bank (northern management region) 

separately.   

 

Analysis of Southern Management Region Data 

Consider the mean length data recorded in the NMFS annual fall groundfish 

survey in the southern management region from 1963-2002 (Figure 2).    Records of 

landings of goosefish began to increase in the southern management region fishery in the 

late 1970’s and the first step in our analysis is to determine if the data reflect a change in 

Z.  The model was fitted repeatedly, each time specifying a different year of the time 

series as the year in which the change in mortality occurred and the objective function 

values were evaluated (Figure 3).    The objective function was maximized by specifying 

the year of change to be 1977, which is consistent with the landings data presented in the 

34th Stock Assessment Workshop (SAW) (NEFSC, 2002).   Mortality was estimated to 
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have changed from 0.31 to 0.60 yr-1 in 1977.   We also estimated the year of change 

directly in the maximization procedure.  The parameter estimates were very similar to 

those obtained by fixing the year of change (Table 2).  The slight discrepancy is 

explained by the year of change being a continuous variable in the simultaneous 

estimation scheme and a discrete variable in the grid search (the estimates being 1977.2 

yr and 1977, respectively, for the year of change).  It is seen that Z1, is estimated quite 

precisely while Z2 is less so.  Estimated correlations of the parameter estimates were 

highest between the two estimated mortality rates and the year of change (0.23 and 0.38  

for Z1 and Z2 respectively) with all other values being less than 0.04.  

The predictive power of the transitional form of the length based estimator was 

then evaluated by making estimates from data as if an assessment were done in each year.  

In other words, an estimate of Z1 and Z2 was made for each year using data only up to 

that year, assuming the year of change was known to be 1977 (Figure 4).  The estimates 

from the transitional form using only data through 1980 (three years after the change in 

mortality) were near 0.7 yr-1 and became very stable at near 0.6 yr-1 by 1984.  Estimates 

from the classic annual Beverton-Holt estimator were highly variable and ranged from 

0.2 to 1.14 yr-1  (for 1977 and 1999, respectively).   

The results from the transitional model are also consistent with the mean values of 

the annual Beverton-Holt estimator summarized over different periods of the entire time 

series (Z =  0.32, 0.75, and 0.65 yr-1 for 1970-1979, 1991-1995, and 1996-2000 

respectively). Estimates from the transitional model, however, were stable in each year 

they were made without the need to average over a number of years or wait for future 

years to smooth the variability in the data.  Note that the stability in estimates was 
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achieved even though the annual groundfish survey was not specifically designed for 

goosefish and sample sizes were very low (number of fish measured in a year’s survey 

ranged from 14 to 196) leading to a high degree of variability in mean length estimates.  

Furthermore, sample sizes prior to 1977 were generally larger than after 1977 which 

partially explains the smaller standard error for Z1 than for Z2.  

 

Analysis of Northern Management Region Data 

Data from the northern management area were also analyzed and required a 

slightly more complex analysis.  The model initially assumed a single change in mortality 

and the best fit indicated the change occurred in 1982 (Figure 5, top). However, an 

examination of the results showed residuals were positive from 1986 to 1993 and mostly 

negative from 1994 to 2002.  This pattern in the residuals indicated that our data did not 

fit the model well and that additional changes in mortality were likely.  Thus, the model 

was modified to incorporate a second change in mortality.  All possible combinations of 

first change and second years of change were tried and a two-dimensional grid search of 

the change years showed changes most likely occurred in 1978 and 1987 (Figure 6).   The 

data appeared to fit the model well with no discernable pattern in the residuals (Figure 5, 

bottom).  The model was refitted with the two years of change estimated simultaneously 

with the mortality rates and variance (Table 3).  Parameter estimates were again 

extremely close to those obtained from the grid search.  Estimated correlations of the 

parameter estimates were in all cases less than 0.6 and for 11 of the 15 parameter pairs 

were less than 0.2. 
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Model Sensitivity 

To test the model’s sensitivity to input parameters, a simulated data set was 

created with a known change in mortality from 0.3 to 0.6 yr-1 in 1977 using growth 

parameters from goosefish in the southern management region (K = 0.1198 yr-1, L∞ = 

129.2 cm) and a known Lc of 30 cm.  The model was then fit assuming that estimates of 

K and L∞ were mis-specified by 10-20%.  Since estimates of K and L∞ are generally 

inversely correlated, we also tested scenarios where K and L∞ are mis-specified in 

opposite directions.  Estimates of the change in mortality were most sensitive to the mis-

specification of L∞ and approximately half as sensitive to the mis-specification of K 

(Table 4).  Model results were relatively stable when estimates of K and L∞ were varied 

inversely with estimates of Z1 ranging from 0.23 – 0.33 yr-1 and estimates of Z2 ranging 

from 0.51 – 0.63 yr-1. 

 

Discussion 

 Fishery managers are continually faced with the challenge of matching methods 

and data sets such that all the critical assumptions can be met.  The method presented in 

this paper is attractive because it requires minimal data that are commonly available and 

it does not require the assumption that catch rate is proportional to abundance. It 

advances a frequently used technique by removing an equilibrium assumption that is 

typically difficult to meet in real world situations.  This allows for the broader application 

of a mean length analysis approach and allows the use of an entire time series of data 

resulting in increased information.   The approach may in some cases represent the best 

opportunity to reconstruct the mortality history of a stock. In addition, the transitional 
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form of the model allows mortality estimates to be made within a few years of a change 

rather than having to wait for the mean lengths to stabilize at their new equilibrium level.  

In other words, as soon as a decline in mean lengths is detected, our model can be applied 

and the trajectory of decline can be used to estimate the new Z and how mean lengths 

will change over time.  Estimates of multiple mortality rates and the years of change 

appear to have the desirable property of having only a low to moderate correlation.  

In our goosefish example, it appears that the population was in equilibrium at the 

start of our time series.  This is not a requirement of the model.  A population that is 

undergoing a change in mean length at the start of a time series can also be successfully 

analyzed because an initial change in mortality that occurs prior to the start of the time 

series can be estimated in the model.  However, this requires the shape of the trajectory of 

mean length over time to be well defined.  If this is not the case, then it may be possible 

to set Z1 equal to the natural mortality rate in cases where observations began to be 

collected shortly after the fishery began.   

The method presented here is not fully efficient because, in theory, there is 

information contained in the variability of length measurements within a year (i.e., the 

sample variance) that is not used in the estimation of mortality rates and change points. 

That is, under high mortality there are few large fish and thus the variance in length 

decreases with increasing mortality rate. An expression for the variance of length 

measurements as a function of the mortality and growth parameters and the years of 

change could be derived and incorporated in the likelihood function. This would be 

appropriate if the sampling design consisted of simple random sampling of lengths. 

However, such a sampling scheme is uncommon and sampling almost always involves 
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some form of cluster sampling (e.g., a boat catches clusters of animals from trawl hauls, 

pot hauls, etc.). Thus, the sample variance of lengths will not be a simple function of the 

population variance of lengths. 

 

Choice of cutoff, Lc

This method is predicated on the assumption of knife-edge selection in the fishery 

at a size Lc. Thus, all fish below the size Lc experience just natural mortality and all fish 

above the size Lc experience a total mortality rate of Z. One can thus sample the 

commercial catch to estimate the mean length of those animals above the size Lc. If the 

fishery does not have knife-edge selection then there is a problem. One can define Lc to 

be the size of full vulnerability to the commercial gear and compute the mean length 

above Lc. However, this means that fish below Lc will experience some fishing mortality 

and thus changes in fishing effort may affect the number of fish reaching the size Lc. As a 

practical matter, this will be important if selectivity increases gradually with length. But, 

for steep selection curves this may not be a problem.  

Often, length composition data will be available from research surveys. If the size 

of full vulnerability to the survey gear is less than or equal to the size of full vulnerability 

Lc in the fishery, one can simply compute the mean of those fish in the survey above the 

size Lc.  In practice, length frequency data are often collected in bins (i.e., as a 

histogram).  The lower limit to one bin is defined to be the cut-off Lc.  Then, the mean 

length in the sample (above the cutoff Lc) is computed by treating all fish in a bin as 

being the size at the midpoint of the size range defining the bin.   
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We also note that with historical data sets, sometimes only the mean length of the 

catch is available and one cannot construct size frequency histograms. The size at first 

capture Lc may only be known approximately and there may be some animals below the 

size Lc that are included in the mean length statistic. If it can be assumed that the 

selection pattern has remained stable over time, then the method presented in this paper 

may still be used to study the history of mortality; however, the results will reflect trends 

in mortality over time but estimates of absolute mortality rate will be biased. 

 

Assumption of constant recruitment 

 The method in this paper is based on the assumption of constant recruitment.  In 

reality, recruitment is likely to vary from year to year.  This will not cause a bias but it 

may lead to autocorrelated errors in a time series of estimates.  To study this, we created 

an extreme case in which there was a complete failure of recruitment in one year and 

observed the effect over time (Figure 7).  The failure of recruitment in an incoming year 

class at first raises the population mean length, thus resulting in an underestimate of total 

mortality.  Later, as that missing year class reaches an age where there should be large 

animals, the mean size of the population declines resulting in an overestimate of mortality 

rate.  In practice, complete year class failure is rare and, to the extent that recruitment 

variability is random (rather than showing a trend over time), one can expect some 

cancellation of errors arising from variable recruitment.  Thus, recruitment variability 

should not negate the use of this method although the reader would be well advised to 

consider the possibility of a trend in mean length arising from a particularly large or 

small year class. 
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Generalizing the approach 

It may occur that observations are available on mean weight but not on mean 

length. This can be accommodated by deriving an expression for mean weight by 

replacing Lt in the derivations with the age-specific weight Wt where 

 

Wt = aLt
b         (10) 

 

where a and b are constants defining the shape of the power function. When the exponent 

b is exactly 3, an analytical solution can be obtained for the mean weight. Otherwise, the 

mean weights can be calculated by numerical methods. 

 In some circumstances, it may be preferable to model reproduction as occurring in 

an annual pulse rather than continuously over the course of the year. This can be 

accomplished by replacing the integrals in the derivations with sums over the discrete age 

classes. 

 A more difficult assumption to deal with is that recruitment is constant over the 

time series being analyzed.  If recruitment varies with the stock size, the model in its 

current form will underestimate the magnitude of any change in mortality.   
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Table 1.  Lag time in years for the mean length of fully vulnerable individuals to approach 

equilibrium and provide an estimate of mortality within 10% of the new level 

following a change in mortality from Z1 to Z2.  In this example, growth parameters 

for goosefish in the southern management region of the Northeast United States 

were used in the calculations (k = 0.1198 yr-1, L∞ = 129.2 cm, Lc = 30 cm).   Note 

that the natural mortality of goosefish is believed to be around 0.2 yr-1 so the first 

row and first column do not appear possible for goosefish.  The shaded cell (Z1 = 

0.4, Z2 = 1.0) is indicated as the example used in Figure 1.   

 

      Z2      
   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
 0.1 - 16 14 12 11 10 9 8 7 7 
 0.2 23 - 9 9 8 8 7 7 6 6 
 0.3 26 11 - 6 6 6 6 6 6 5 

Z1 0.4 27 13 7 - 4 5 5 5 5 5 
 0.5 28 14 8 4 - 3 4 4 4 4 
 0.6 28 15 9 6 3 - 2 3 4 4 
 0.7 29 15 10 7 5 2 - 2 3 3 
 0.8 29 15 10 7 5 4 2 - 2 2 
 0.9 29 16 10 8 6 4 3 2 - 2 
 1 29 16 10 8 6 5 4 3 2 - 
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Table 2.  Results for goosefish from the southern management region. 

Parameter Estimate Standard 
Error 

t value 95% Profile Likelihood 
Confidence Intervals 

Variance 37.44 4.29 8.72*** 30.37 – 47.74 
Z1 0.33 0.02 17.94*** 0.29 - 0.37 
Z2 0.58 0.06 9.62*** 0.48 - 0.72 

Year of Change 1977.23 1.00 1973.55*** 1975.26 - 1979.19 

 
*** Significant at p < 0.0001 
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Table 3.  Results for goosefish from the northern management region. 

Parameter Estimate Standard 
Error 

t value 95% Profile Likelihood 
Confidence Intervals 

Variance 22.93 2.63 8.72*** 18.61 – 29.25 
Z1 0.14 < 0.01 28.46*** 0.13 - 0.15 
Z2 0.30 0.03 8.83*** 0.24 - 0.38 
Z3 0.56 0.05 10.78*** 0.47 - 0.69 

Year of first change 1978.21 0.91 2167.74*** 1975.96 - 1980.26 
Years until next change* 9.58 (1987.79) 1.33 7.19*** 6.37 (1984.58) - 12.85 (1991.06) 

 
*Corresponding year indicated in parentheses 
*** Significant at p < 0.0001 
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Table 4.   Sensitivity of Z estimates to over or underestimation of actual K and L∞.  A 

simulated data set was used with a known change in Z from 0.3 to 0.6 with growth 

parameters from the goosefish southern management region (K = 0.1198 yr-1, L∞ = 

129.2 cm).  

 

K Estimate L∞ Estimate Z1 Z2

Actual Actual 0.30 0.60 
Actual 10% Low 0.25 0.52 
Actual 10% High 0.35 0.68 

10% High Actual 0.33 0.65 
10% Low Actual 0.27 0.55 
10% High 10% Low 0.27 0.56 
10% Low 10% High 0.32 0.62 

Actual 20% High 0.41 0.77 
Actual 20% Low 0.19 0.43 

20% High Actual 0.36 0.71 
20% Low Actual 0.24 0.49 
20% Low 20% High 0.33 0.63 
20% High 20% Low 0.23 0.51 
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Figure 1. Response of the Beverton-Holt mortality estimator to a change in total mortality rate 

from 0.4 yr-1 to 1.0 yr-1, when the von Bertalanffy growth coefficient (K)  is 0.1 

(dotted line), 0.5 (solid line), and 1.0 yr-1 (dashed line),  when  L∞  = 129.2 cm, and Lc 

= 30 cm.  These conditions approximate the situation for goosefish.  After 3 years, the 

estimates approach the new value of Z if K is large.  With a low K, an additional year 

is necessary.   

Figure 2.  Observed mean lengths from the 1963-2002 National Marine Fisheries Service 

annual groundfish survey in the southern management region and predicted values 

from the transitional length statistic derived in this paper. 

Figure 3. Estimated mortality rates in the southern management region and value of the 

objective function as functions of the specified year in which mortality changed.  The 

objective function is maximized by specifying the year of change to be 1977. 

Figure 4.  Estimates of goosefish mortality rates in the southern management region made in 

various years.  Estimates based on a single year’s data (Beverton-Holt method) are not 

very stable.  Estimates of Z1 from the new method were stable, and estimates of Z2 

were stable provided data up to at least 1980 were used.  The year of change was 

specified to be 1977 for all estimates made with the new method.   

Figure 5.  Top:  Results of applying the new method (solid line) to the goosefish mean length 

data from the northern management region, when a single year of change in mortality 

is estimated.  Note the pattern in the residuals at the far right suggesting that mortality 

may have changed more than once.  Dots represent observed mean lengths. Bottom:  

Model with two changes in mortality fitted to the same data.   
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Figure 6.  Contour plot of objective function values to determine the two years in which Z 

changed in the northern management region.  The objective function was maximized 

(indicated by the dotted line) by an initial change in 1978 and a second change in 

1987.    

Figure 7.  Response of the Beverton-Holt estimator to a violation of the assumption of 

constant recruitment.  A complete reproductive failure under two different levels of 

fishing mortality is simulated in year three.  Life history parameters for goosefish in 

the southern management region were used for this example.  
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Appendix A. Derivation of the Mean Length d Years After a Change in Mortality Rate 

 As indicated in the main text, the mean length in the population d years after a 

change in mortality is 
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 We would like to get rid of to in the numerator. Solving the von Bertalanffy 

growth equation for to we obtain 
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Substituting this into the numerator NUM and simplifying gives 

 

 108



22

2 2 2

22

1 1

( )exp((1 exp( ))

( )exp( )exp( )

gc

g

L L Z dL LL Z dNUM
Z Z K Z K

L L Z dL Z d
Z Z K

∞∞∞

∞∞

)− −−− −
= − +

+ +

− −−
−

+

+

 

where Lg is defined to be the length at age g (= tc + d). Now, the only problem is that we 

have the parameter Lg which we would prefer to express as a function of Lc. The 

difference between Lg and Lc is 
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where b = exp(Kto) . Solving for Lg and simplifying, we obtain 
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Finally, dividing the numerator by the denominator gives equation (6) in the main text. 
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Appendix B. Derivation of the Mean Length after Multiple Changes in Mortality 

Rate. 

 Here, we present a general expression for the mean length when there have been k 

changes in mortality rate over time. We define the variables di to be the time elapsed 

between the ith and i+1th change in mortality, for i = 1, …, k-1, and dk to be the time 

from the last change in mortality to the point where the mean length was observed. In 

other words, di measures the duration of the period when Zi+1 was affecting the 

population. The mean length is 
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Chapter 5 

 

 

Simple Methods for Estimating Survival Rate 

from Catch Rates from Multiple Years 
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Abstract 

Survival rates can be estimated from annual surveys by tracking the abundance of 

one or more cohorts, as measured by catch per unit of sampling effort, from one year to 

the next. It can be difficult to attain reasonable precision unless sampling effort is 

extensive. Indeed, estimates of survival exceeding 100% are not infrequently obtained. 

We show that data from several years can be analyzed simultaneously to obtain a single 

estimate of survival under the assumption that survival is constant over the period 

analyzed. The method requires that only a single age group need be identifiable and thus 

has minimal data requirements. Estimates of goosefish (Lophius americanus) survival 

obtained by this method compare favorably with estimates obtained by analyzing changes 

in mean length over time. 
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Annual survival rate, S, can be estimated from annual surveys using a longitudinal 

catch curve to follow a cohort over time. This is based on the relationships that 

 

  Na+1,t+1 = S Na,t 

 

and 

 

  Iat = qNat  

 

where Na,t is the number of animals of age a alive at the time of the survey in year t, Iat is 

an index of abundance of the animals of age a in year t, and q is the catchability 

coefficient. The survival rate can thus be estimated by linear regression of the index on 

the previous year’s value for the same cohort. The assumptions are that survival and 

catchability are both constant over time and age, and that the ages of the animals 

observed in the survey can be determined. 

 Sometimes, it is difficult to determine ages for older animals. If one age group can 

be identified and separated from the others, and two years of data are considered, then the 

survival rate can be estimated by 

 

ta

ta

ta

ta
t I

I
N

N
S

≥

++≥

≥

++≥ == 1111       (1) 

 

 114



where the ^ indicates an estimate and the notation  means all ages greater than or 

equal to a. That is, age groups are pooled and the abundance of a group of cohorts is 

followed from one year (when they are age a and above) to the next (when they are age 

a+1 and above). Heincke (1913, cited in Ricker 1975) was apparently the first to suggest 

pooling data over ages although he formulated the estimation procedure in terms of a 

cross-sectional catch curve (age composition observed in one year) rather than as a 

longitudinal catch curve (changes in abundance of specified cohorts monitored over 

time). A generalization of this to include more than two years of data has not been given 

previously and is developed below. 

a≥

 

 

Development of multi-year estimators 

 

 We consider just two age groups in the population – recruits and previously 

recruited animals. Recruits are defined to be those animals that will join the previously 

recruited animals the next year (if they survive the year). The relationship between the 

number of previously recruited animals in year t+1, Nt+1, and the number of recruits Rt 

and previously recruited animals Nt in year t is: 

 

  Nt+1 = S Nt + φ∗ Rt  ,            t = 1, …, T-1
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where φ∗ and S are the survival rates of the recruits and previously recruited animals, 

respectively, and T is the number of years of survey data. In terms of indices of 

abundance, we have 

 

  It+1 = S It + φ rt   ,            t = 1, …, T-1    (2)

 

where rt is the index of recruits in year t and φ  subsumes the survival of recruits and the 

selectivity of the survey gear for recruits. If the indices It are independent then equation 

(2) is in the form of a multiple linear regression with no intercept. Parameter estimates 

can be found easily by minimizing the sum of squared deviations between observed 

indices and predictions obtained from the previous year’s index: 

 

  (I∑
−

=

1

1

T

t
t+1 – S It – φ rt)2 . 

 

Estimates of S and φ may be highly negatively correlated and unstable unless 

appreciable contrast is observed in the recruitment over time. When recruitment is not 

highly variable, an alternative is to ignore the recruitment altogether and replace equation 

(2) with 

 

  It+1 = S It + β   ,            t = 1, …, T-1     (3)

 

where β is the intercept in a linear regression.  
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 Another alternative is based on the idea that the parameter φ likely is close to the 

value of S. Recruits may have a higher natural mortality than previously recruited animals 

but likely have a lower fishing mortality and a lower catchability so that, on balance, it 

may be reasonable to set φ equal to S to obtain an estimate of survival. Thus, equation (2) 

would be replaced by  

 

  It+1 = S ( It +  rt) ,            t = 1, …, T-1.    (4). 

 

 

Example: Goosefish 

 

 Goosefish (Lophius americanus) are captured in the annual groundfish trawl 

survey conducted by the National Marine Fisheries Service Woods Hole Laboratory in 

the fall of each year. However, the survey was not designed to sample this species and the 

catches are always low, ranging from 14 to 196 animals per survey. Despite this, the 

mean length data from the survey have proved useful for estimating mortality rates even 

though the mean lengths vary greatly from year to year (see Gedamke and Hoenig 2006). 

Estimates were made for two regions: the northern management area, comprising the 

Gulf of Maine, southern New England and Georges Bank, and the southern management 

area, comprising waters from Rhode Island to North Carolina. It is of interest to see how 

well those values are reproduced when mortality is estimated from catch rates (Table 1) 

instead of mean lengths. 
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Goosefish are believed to be fully vulnerable to the survey trawl when they reach 

30 cm in total length (NEFSC 2002). We determined the first fully vulnerable age class 

using the von Bertalanffy growth models developed by the National Marine Fisheries 

Service. Growth parameters for the northern region are:  = 126.0 cm, K = 0.1080 yr∞L -1; 

for the southern region the values are  = 129.2 cm, K = 0.1198 yr∞L -1 (NEFSC 2002). No 

values were given for the parameter to so a value of 0.0 yr was assumed for both regions. 

It is seen that fish from age 2.5 to 3.5 have predicted lengths of 29.8 to 39.7 cm in the 

northern region. Consequently, fish in the size range 30 to 40 cm are taken to be the 

recruits, and all fish above the size 40 cm are considered the previously recruited animals. 

For the southern region, the recruits are 33 to 44 cm. 

 We apply equation (1) to the catch rate data in Table 1 and Figure 1 to obtain 

annual estimates of survival rate and then convert these to estimates of instantaneous 

rates of total mortality, Z , according to the formula Z  = - ln( S ) (Figures 2 and 3). Data 

from the 1963 and 1964 surveys give rise to an estimate of survival between the surveys, 

i.e., between fall 1963 and fall 1964. We refer to this as the survival in 1964 because 

most of the time interval is in 1964. Not unexpectedly, the results are highly variable and 

often infeasible (i.e., estimates of mortality rate are negative). We computed the 

arithmetic mean of the results from (1) over the periods of years of stable mortality 

identified by Gedamke and Hoenig (2006) from their analysis of mean sizes (Table 2, 

Figures 2 and 3). Averaging the annual estimates gives results roughly similar to those 

obtained by Gedamke and Hoenig but the agreement is strong only in one comparison. 

We apply the estimators in (2), (3) and (4) to those same ranges of years. Results from 

equations (2) and (3) were poor and are not shown here. 
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 The results of applying equation (4) are extremely close to the results of Gedamke 

and Hoenig (2006) for four of the five comparisons. Only for the period 1963 to 1976 for 

the southern region was there a large discrepancy ( Z  = 0.33 yr-1 based on mean lengths 

and = 0.55 yr-1 based on (4)). 

 

Sensitivity Analysis 

 

Assumption that φ = S  

 A key assumption in applying equation (4) is that the parameter φ is equal to S. 

We specify departures from this assumption by specifying γ S = φ. Then (2) can be 

written 

  

  It+1 = S It + γ S rt  ,            t = 1, …, T-1.    

 

The effect of assuming γ = 1, when it is really some other value, can be determined by 

multiplying all the recruitment index values by the other value and then re-estimating the 

survival rate. We did this for the northern management region data from 1963 to 1977 

and converted the results to instantaneous rates of total mortality, Z. The computed Z is 

an increasing function of the value of γ used and is described by: computed  Z = 0.0554 γ 

+ 0.123 such that when γ = 1 the computed Z is 0.1784, as reported in Table 2. If φ is 

really 90% of S (i.e., γ = 0.9), the estimate of Z should be 0.17286 and the percent 

difference in results is 
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  % difference = 100(.1784 - .17286)/.17286 = 3% . 

 

Thus, a 10% error in the specification of γ results in a 3% error in the estimate of Z. In 

this case, at least, the estimator is insensitive to model misspecification. 

 

Effects of systematic errors in age composition 

 There are two effects of systematic errors in the specification of age composition. 

First, if only a portion of the animals in age group 1 (the recruits) is included in the 

analysis the result will be a positive bias in the survival estimator. This is easily seen 

from equation (1) where the denominator is made smaller by the exclusion of some 

recruits. Similarly, including some animals in the new recruits category that will not 

reach the size of the second age group in one year results in a negative bias. 

 The second consequence of systematic misspecification of age composition is that 

the estimator is no longer unaffected by recruitment variability. Suppose the fraction α of 

age group 1 included in the analysis is constant. Then, as recruitment approaches zero, 

the estimator approaches the survival rate, S. As recruitment increases without bound, the 

estimator tends to S/(1 - α). If recruitment is overestimated (some animals are included in 

age group 1 that will not grow into age category 2 in one year) but recruitment 

approaches zero then the estimator tends to the true survival rate S. If recruitment is 

overestimated and recruitment approaches infinity, the estimator is too low and tends to 

S/(1 + α). These conclusions are justified in the Appendix.  
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Discussion 

 

 We have presented a new approach to estimating survival rate from multiple years 

of survey data. The big advantages of this approach are that one does not need to know 

the magnitude of the landings and one does not have to be able to age the catch beyond 

identifying the recruits.  

 For the goosefish example, it appears that the survey catch rates are more variable 

than the mean lengths and, consequently, that the precision of the estimates from the new 

approach may be less than those based on the Gedamke and Hoenig (2006) approach 

based on mean lengths. However, it should be noted that both methods can be applied to 

the same data. For goosefish, it is reassuring that the two approaches gave very similar 

results for five of the six time-area comparisons. Estimates obtained by averaging two-

year estimates obtained by equation (1) appeared reasonable in most cases. However, 

averaging a set of numbers that contain nonsensical values (survivals greater than 1.0) 

may be troubling and hard to justify. 

We relied on the model described by equation (4) because the survey catches of 

goosefish were low and the catch rates highly variable. In cases where a species is better 

sampled, it may be worthwhile to use the models in (2) and (3). 

 Our example involved survey catch rate data. It is also possible to apply the 

method to commercial catch rate data provided these represent relatively short periods of 

time. For example, catch rate in the first two months of year t+1 can be compared to 

catch rates in the same period in year t. The restricted period of time within a year is 

necessary for two reasons. First, catch rate in a time interval is proportional to average 
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abundance in that interval. Thus, over an extended period of time the effort may be large 

and the commercial catch rate reflects both the initial abundance and the depletion of the 

population. The second reason for using a restricted period of time is that catchability, 

recruitment and other factors may change seasonally so that catch rate is harder to 

interpret.  

 In the appendix we investigate the impact of errors in determining the fraction of 

the survey catch that will recruit in the next year and place bounds on these errors. In 

cases where errors in determining the catch composition may be appreciable, the survival 

estimators are more properly thought of as providing an index of survival rather than 

absolute survival. That is, the estimators can be used to monitor trends in survival rate 

over time rather than to quantify the level of survival. 
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Appendix: effects of systematic errors in age composition on survival estimates 

 

 Referring to figure A.1, we note the survival estimator in equation (1) can be 

viewed geometrically as a ratio of areas 

 

  
11

2

ba
bS
+

=ˆ         (A.1) 

 

where a1 represents the abundance of recruits in year 1 and b1 and b2 are the abundances 

of previously recruited animals in years 1 and 2, respectively. If a portion of the animals 

that will recruit in year 2, say, α a1, is excluded from the recruitment, then the estimate of 

survival will be biased high. Similarly, if some animals are included in the recruitment 

that will not, in fact, recruit in year 2 (a1 is specified to be too large), the estimate will be 

biased low. 

 We now consider how the magnitude of the recruitment affects this result. We 

note that 

 

  b2 = S( a1 + b1).       (A.2) 

 

If a portion of the recruitment, say, α a1, is excluded from the calculation of survival, 

then (A.1) becomes an erroneous estimate of survival, , given by errŜ
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Suppose the recruitment a1 approaches zero. This implies that the amount of recruitment 

not included in the calculation, α a1, also approaches zero. Then,  approaches 

S(b

errŜ

1/b1) = S. On the other hand, suppose a1  ∞ while α remains constant. Then, 
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 Similarly, it can be shown that if recruitment is overstated by an amount α, but 

recruitment approaches zero, then the erroneous estimator approaches the true survival 

rate, S.   And, under the same circumstances, if recruitment approaches infinity, the 

survival estimate approaches S/(1+α). 
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Table 1. Survey stratified mean number per tow for goosefish off northeastern United 

States. The surveys were conducted in the fall of each year. 

___________________________________________________________________ 

                               northern region         southern region 

     catch per tow of size    catch per tow of size 

survey year > 40 cm > 30 cm  > 44 cm > 33 cm 

1963 1.035 1.218 0.266 0.330 

1964 0.777 0.938 0.311 0.333 

1965 1.137 1.384 0.489 0.492 

1966 0.172 0.234 0.189 0.189 

1967 0.225 0.272 0.259 0.259 

1968 0.228 0.307 0.411 0.411 

1969 0.266 0.282 0.375 0.389 

1970 0.120 0.168 0.439 0.451 

1971 0.764 1.081 0.246 0.282 

1972 0.289 0.558 0.455 0.476 

1973 0.128 0.167 0.250 0.270 

1974 0.349 0.442 0.260 0.276 

1975 0.196 0.263 0.370 0.409 

1976 0.231 0.253 0.577 0.616 

1977 0.188 0.192 0.495 0.539 

1978 0.258 0.357 0.408 0.432 

1979 0.234 0.451 0.440 0.481 

1980 0.344 0.577 0.338 0.346 

1981 0.115 0.254 0.130 0.130 
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1982 0.430 0.577 0.341 0.418 

1983 0.201 0.222 0.379 0.445 

1984 0.234 0.336 0.234 0.305 

1985 0.107 0.168 0.411 0.475 

1986 0.048 0.099 0.189 0.232 

1987 0.086 0.120 0.245 0.274 

1988 0.168 0.274 0.217 0.260 

1989 0.084 0.120 0.180 0.232 

1990 0.148 0.254 0.219 0.349 

1991 0.077 0.147 0.294 0.406 

1992 0.042 0.139 0.234 0.315 

1993 0.109 0.168 0.219 0.356 

1994 0.079 0.204 0.344 0.709 

1995 0.115 0.168 0.308 0.502 

1996 0.182 0.224 0.208 0.342 

1997 0.116 0.172 0.217 0.323 

1998 0.053 0.157 0.157 0.376 

1999 0.105 0.227 0.528 0.954 

2000 0.159 0.251 0.588 0.924 

2001 0.377 0.523 0.501 0.776 

2002 0.238 0.325 0.575 0.660 
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Table 2. Estimates, Z , of total mortality rate for goosefish in two management areas. 

The Z from lengths were taken from Gedamke and Hoenig (2006). 

 

Northern management area.  

Period     Z  from lengths         Z  from (4)         average of Z  from (1)   

___________________________________________________________________________________________________ 

1963-1977             0.14                          0.18      0.07 

1978-1988             0.29                          0.28      0.19 

1989-2002             0.55                          0.48      0.39 

 

Southern management area 

Period     Z  from lengths          Z  from (4)         average of Z  from (1)   

___________________________________________________________________________________________________ 

1963-1976   0.33     0.55      0.37 

1977-2002   0.58     0.56      0.47 

__________________________________________________________________ 
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List of Figures 

 

Figure 1. Catch rates (mean number per tow) of goosefish in National Marine Fisheries 

Service groundfish surveys in two management regions off the northeast coast of 

the United States. The dashed line denotes catch rates of previously recruited fish; 

the solid line denotes catch rates of recruiting and previously recruited fish 

combined.   

 

Figure 2. Estimates of total instantaneous mortality rate Z (= - ln(S)) for the northern 

management area in three time periods, obtained by Gedamke and Hoenig (2006) 

from the length frequencies of the survey catches (heavy dashed lines). Also 

shown are annual estimates of Z obtained from equation (1) (triangles) along with 

their averages over the three time periods (dotted lines) and the results of applying 

equation (4) (solid lines).   

 

Figure 3. Estimates of total instantaneous mortality rate Z (= - ln(S)) for the southern 

management area in two time periods, obtained by Gedamke and Hoenig (2006) 

from the length frequencies of the survey catches. Also shown are annual 

estimates of Z obtained from equation (1) (triangles) along with their averages 

over the two time periods (dotted lines) and the results of applying equation (4) 

(solid lines).  Note that two extreme values of the estimator based on equation (1) 

are not shown. 
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Appendix Figure 1. Hypothetical length frequency distributions showing two modes 

representing one identifiable age class (ai) and one “composite” or “plus” group 

consisting of multiple age classes (bi), for years i = 1, 2. The text discusses the 

effect on the estimated survival rate of not including the area marked α a1 as part 

of the recruitment in year 1. Length frequencies are shown as triangular 

distributions merely for convenience. 
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Figure 2 
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Chapter 6 

 

 

Using demographic models to determine intrinsic rate of increase and sustainable 

fishing for elasmobranchs:  pitfalls, advances and applications 
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Abstract 

Leslie matrices and life tables are demographic models commonly used to 

evaluate the ability of specific elasmobranch life history strategies to sustain given levels 

and patterns of fishing pressure.  These models are generally density-independent and 

provide an instantaneous rate of population growth for a specified set of life history traits 

which correspond to a specific population size.  Many investigators are using these 

models to compute rates of population growth that they claim are estimates of maximum 

population growth rate (rintrinsic); they then use these estimates to compute purported 

estimates of maximum sustainable fishing mortality.  However, neither a Leslie matrix 

nor a life table can be used to estimate rintrinsic without additional information except in the 

special case where a severely depleted population is modeled.  Only in a severely 

depleted population will competition for resources be at a minimum and both density-

dependent compensation and the rate of growth be at a maximum (i.e., at rintrinsic).  The 

fundamental problem is to determine the life history parameters that would occur if the 

population were extremely depleted because extensive observations on extremely 

depleted populations are rare. In the absence of such data, rintrinsic can only be estimated 

from these types of density-independent models by extrapolating observed population 

growth rates towards zero population size.  We illustrate the problems in, and describe 

methods for, estimating rintrinsic, and present information on two species of elasmobranch:  

barndoor skate Dipturus laevis and lemon shark Negaprion brevirostris.   
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Classic demographic analysis, based on a life table or Leslie matrix, provides an 

estimate of the exponential (or, more properly, geometric) rate of population growth (or 

decline) based on a fixed set of life history parameters.  Alternatively, the model can be 

thought of as providing the current (short-term) rate of population change under current 

conditions.  For the elasmobranchs, where many stocks have been severely depleted, the 

question is to what extent these populations can withstand fishing pressure.  Recently, 

this question has been approached by attempting to use demographic models to determine 

the intrinsic or maximum rate of population increase, rintrinsic, and therefore the maximum 

sustainable fishing pressure.  However, fundamental errors in the interpretation of the 

models are common.   

Problems in the use of a basic demographic analysis for estimating rintrinsic arise 

from the density-independent nature of their structure and the use of static life history 

parameter inputs.  In reality, at least some life history traits must be pliable and able to 

respond to changes in population size.  This forms the basic logic behind density-

dependent compensation which explains why populations rarely go extinct and cannot 

grow beyond the bounds fixed by limiting factors (such as food sources or space) for 

extended periods (i.e., there is a carrying capacity of the environment).  

Throughout most of this paper, we will assume for simplification of exposition 

that all compensatory response occurs in the survival in the first year of life (S0) rather 

than in maturity, fecundity, or survival after the first year.  This may be particularly 

justifiable in the case of elasmobranchs as it is unlikely that litter size or mating 

frequency could change appreciably and S0 appears to be related to population size in at 

least the lemon shark (Gruber et al. 2001).  When evidence exists that compensation can 
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occur in other parameters, this is easily incorporated into the models.  In our analysis of 

the lemon shark (see Applications section), for example, we had evidence to support 

extending the compensatory response into the survival of age one animals.  

Direct evidence to define density-dependent relationships is rarely available.  In 

fact, even estimating the survival of the youngest animals, regardless of population size, 

is extremely difficult. Therefore, these models can be used in reverse, allowing first year 

survival (S0) to be calculated assuming a schedule of reproductive output and survival 

(excluding S0) and a known rate of population growth, e.g., a 10% rate of increase might 

be observed when a stock is released from fishing pressure, or zero growth might be 

observed or hypothesized when the population is at equilibrium (Vaughan and Saila 

1976).  Hoenig and Gruber (1990) expanded on this approach by estimating S0 for a 

virgin population of lemon sharks Negaprion brevirostris assumed to be at equilibrium. 

They assume that changes in S0 are the principal mechanism for density-dependent 

compensation and for a series of increasing values of fishing mortality, they calculated 

the S0 that would result in equilibrium. Since it is unlikely that first year survival can rise 

to that of unfished adults, the value of fishing mortality that would require the first year 

survival to rise above that of an adult in an unfished population was interpreted as an 

upper limit to sustainable fishing mortality. Similarly, an upper limit to the intrinsic rate 

of population growth (rintrinsic) is estimated by removing fishing pressure from this model.    

However, there is no guarantee that these upper limit estimates can be achieved. 

A number of studies have followed this upper limit approach (Sminkey and 

Musick 1996; Casey and Myers 1998; Mollet and Cailliet 2002).  However, Cortés’ 

(2004) summary of studies using demographic analysis for elasmobranchs reveals that 
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many investigators purported to 1) calculate an actual value for rintrinsic (or, equivalently, 

for maximum sustainable fishing pressure) rather than an upper bound, or 2) tried to rank 

species by the amount of fishing mortality they can withstand.    The logic behind these 

attempts is generally unclear and is either flawed or based on unstated assumptions. 

In this paper we first review the logic of simple demographic analysis using the 

Leslie matrix (but the same logic holds for life tables), show basic relationships, and 

discuss what can and cannot be inferred.  We then discuss how additional information 

can be utilized to make additional inferences.  We derive methods for estimating rintrinsic 

and apply them to two species of elasmobranch:  barndoor skate Dipturus laevis and 

lemon shark Negaprion brevirostris.  

 

Basics of Population Dynamics and Demographic Analysis 

 Demographic analysis simply tracks the change over time in number of animals at 

different ages or stages given a schedule of age (or stage) specific reproductive output 

and mortality (Gotelli 1998; Caswell 2001).  Models can be constructed assuming 

continuous or annual reproduction and, if the latter, assuming abundances pertain to just 

before breeding or just after breeding occurs.   

Suppose we have the following information which would be required for an age-

based demographic analysis:  age at maturity (amat) = 3 years, longevity (amax) = 6 years, 

survivorship at each age (S0, S1, S2,…,S5), and the production of females per female (f1, 

f2, f3,…,f6) which is a function of the percentage reproducing in each age class, frequency 

of births, sex ratio, and litter size.  We assume numbers are tallied before reproduction 

takes place (pre-breeding census).  We can then calculate from the number of females at 
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each age (n1,t, n2,t,…,n6,t) the numbers of females there will be in the following year 

(n1,t+1, n2,t+1,…,n6,t+1) where nij is the number of animals of age i at the start of year j.  The 

number of age-0 females produced will be:   

=
+ = ∑

6

1
1, 1 0 ,

i
t i t in S n f  .   (1) 

The number of females at all other ages is given by: 

+ + =1, 1 ,i t i t in n S .    (2) 

These basic relationships are fundamental to any demographic analysis including 

life tables, matrix analysis, and Euler-Lotka approaches.  In a Leslie matrix analysis the 

life history information for our example is organized in a projection matrix A as: 
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The number of females at each age at time t is denoted by: 

T
t                 1,t 2,t 3,t 4,t 5,t 6,t N  = n , n , n , n , n , n⎡ ⎤⎣ ⎦ . 

The female population at time t + 1 is then given by  

+ =1tN A tN       (3) 

The predicted rate of population increase (rpredicted) is defined here to be the 

instantaneous rate of growth of the population given the parameters used in the projection 
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matrix and a stable age distribution.  It is directly related to the largest eigenvalue (λ) of 

the matrix A as rpredicted = loge(λ) (Vaughan and Saila 1976).   In a follow up study, 

Vaughan (1977) derived a computational method to calculate rpredicted which is often used 

in practice.  

In this type of demographic model, rpredicted represents a snapshot of the population 

growth rate based on a fixed set of life history parameters and a given schedule of fishing 

mortality.  In reality, populations are not governed by a fixed set of life history 

parameters, but by the dynamic relationship of these parameters to stock size.  The basic 

logistic model of population growth has been used extensively in both fisheries and 

ecological research and is the simplest to include the logic of density-dependent 

compensation through a linear relationship of population growth rate to population size. 

Throughout this paper, the logistic model will simply serve to illustrate the importance of 

including stock size in the design and interpretation of a demographic model.   In reality 

the relationship may be curvilinear (see, e.g., Sibley et al. (2005)), but use of a nonlinear 

model requires more data which often will not be available.    

The logistic model (and, in general, density-dependent models) states that under 

virgin conditions, a population will reach an equilibrium state around a carrying capacity 

(K) (Figure 1a).  The number of births will equal the number of deaths and the population 

growth rate will equal zero until some force, such as fishing pressure, reduces the 

population size.  At lower numbers, more resources are available to each individual and 

survival, particularly of first-year individuals (S0), increases.  If released from the fishing 

pressure, as in our example, a recovery begins in the population at a rate which is 

conditional on the population size relative to the virgin stock size.  The logistic model 
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states that the instantaneous rate of growth will be greatest in an uncrowded condition.  

As the population begins to recover and resources become increasingly limiting, 

population growth slows and eventually approaches zero (i.e.  births equals deaths).  In 

reality, virgin populations and populations that have not been fished for a very long time 

may not have a zero growth rate at any particular point in time.  However, we stress that 

the expected or long-term average growth rate must be zero.   

We will need the following definitions of instantaneous population growth rate 

for this paper: 

rintrinsic = maximum population growth rate (can only occur in the absence of fishing, at 

the lowest population size, when density-dependent compensation is at a 

maximum); a stable age distribution is assumed 

rconditional = rate of population growth when there is no fishing mortality, given a 

schedule of survival and reproduction (conditional on population size and 

resulting density-dependent compensation) and given a stable age distribution 

rpredicted = predicted rate of population growth when all other parameters are known 

(assuming a stable age distribution and a given population size); rpredicted 

equals rconditional minus effects of any fishing mortality 

robserved = observed rate of population growth (assuming no measurement error;  no 

assumption of stable age distribution is made) 

It is important to note that the rate of population growth observed from actual field data, 

robserved, should be expected to equal rpredicted when a stable age distribution is present in the 

population (Figure 2).   
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The concept of the population growth rate being linked to population abundance 

is critical to the design and interpretation of any elasmobranch demographic analysis 

(Vaughan 1977; Hoenig and Gruber 1990).  Consider a hypothetical elasmobranch 

population under three different levels of exploitation:  virgin, moderately fished, and 

depleted (Figure 1b). Assume that the fishing history has been stable for long enough that 

by time “a” any density-dependent compensation that could occur, has occurred, and the 

populations are at equilibrium.  The three populations have realized different levels of 

density-dependent compensation to remain at equilibrium at different population sizes 

(N) and different levels of fishing mortality (F).  Note that this implies that the predicted 

rate of population change is equal to 0 in all cases.  Removing the fishing mortality (time 

“b”) in each scenario reveals the rate of population increase, rconditional, that can result at 

the given population size.  The virgin population can realize no change in fishing 

mortality and continues at its carrying capacity in an equilibrium state (rconditional = rpredicted 

= 0).  The moderately fished population has been released from some level of fishing 

mortality and the calculated rconditional represents the short term growth potential of a 

population of that size when released from exploitation.  In the depleted population, 

density-dependent compensation is at its maximum (S0 is at its maximum in our example) 

and once released from fishing pressure the population will recover at its maximal rate 

(rconditional = rintrinsic).  Thus, the instantaneous potential population growth rate, rconditional, 

depends on the size of the population. This is a property of all population models with 

density-dependence.  According to the logistic model being used in our example, 

population growth rate is related to the intrinsic rate of increase in the absence of fishing 

by the linear relationship (Figure 3): 
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conditional intrinsicr  = r  (1- N K ) .     (4) 

When fishing occurs on all ages at an instantaneous rate F (per year), 

    =  predicted conditional intrinsicr  = r - F r  (1- N K ) - F .   (5)   

Using the calculated rconditional in each population to project the population growth 

forward in time after the cessation of fishing (Figure 1b) further illustrates the density-

independent nature of the Leslie matrix/life table model. Exponential growth is predicted.  

This is realistic over the short term but becomes increasingly unrealistic as the stock 

grows larger.  The value of rconditional is dependent on the life history parameters (S0 in our 

example) which, in turn, are dependent on stock size.  The value of rconditional and 

predicted exponential growth approximates the more realistic logistic growth model only 

for a specific stock size and thus only for a short period of time.  It is therefore only 

possible to compute rintrinsic from a demographic analysis if the model parameters 

represent conditions in a severely depleted population or if additional information is 

available.  In all other cases, all that is known about the calculated rate of population 

increase (rconditional) is that it falls somewhere between 0 and rintrinsic (Figure 3).  

 

Uses of the Leslie Matrix 

The above is not meant to imply that a Leslie matrix has no value by itself.  A 

demographic analysis can be used to check the validity of parameter estimates.  For 

example, Grusha (2005) found that parameter values from the literature for cownose ray 

Rhinoptera bonasus in Chesapeake Bay seemed reasonable but led to a life table 

prediction that the population would crash under no fishing pressure unless S0 exceeded 
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100%.  In this case, or when S0 is required to be greater than adult survival, life history 

parameters are suspect and need to be re-evaluated. 

Unfortunately, for most elasmobranchs, the information necessary to determine 

rintrinsic through classic demographic modeling is unavailable.  Even in the most well 

studied species where age-at-maturity, fecundity, natural mortality and even stock size 

are known, estimates of S0, fishing mortality (F), and observed rate of increase (robserved) 

are rare.  These three parameters are closely linked.  In situations where two of the three 

parameters are known, the Leslie model can be used to solve for the remaining one 

(assuming that all other model parameters are known).  For example, in situations where 

F can be assumed to be zero, and survey data provides a known rate of population 

increase (robserved), the model can be solved for S0  (as in Vaughan and Saila 1976; Hoenig 

and Gruber 1990).  Alternatively, if F is assumed to be zero and S0 is known, the model 

can be solved for the current rate of population increase (in this case rpredicted should equal 

rconditional) (we return to this case when we consider the lemon shark data in the example 

section).   If F and S0 are not known, as in most cases, there are an infinite number of 

solutions to the model that will result in equilibrium (or in a specified rate of population 

growth).   

In situations where even less information is available, matrix models can be used 

to examine the effects of individual parameters while holding all the other parameters 

constant and accounting for initial conditions (age-composition).  This can provide 

insights into the dynamics of the population, e.g., how various age-specific harvesting 

strategies affect the dynamics (Cortés 1994; Heppell et al. 1999; Beerkircher et al. 2002), 
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but does not allow quantitative predictions if some parameters are unknown and fixed at 

arbitrary values.   

 

Pitfalls of Interpreting Demographic Analyses 

For most elasmobranch stocks, empirical estimates of the necessary model inputs 

for determining rintrinsic and maximum sustainable fishing mortality are simply 

unavailable.  Typically, parameter estimates are available for maturity-at-age, fecundity, 

longevity, and survival in the absence of fishing mortality for all but the youngest age 

class(es).  In a few cases, estimates of observed population growth are available.   

Lacking direct information, many studies have used empirical relationships to 

obtain survival rates.  These relationships are of two types:  those that provide a single 

value (e.g., Pauly 1980; Hoenig 1983; Jensen 1996) and those that provide age-specific 

values (Peterson  and Wroblewski 1984; Chen and Watanabe 1989; Table 1).  The 

assumptions behind the use of the two types of estimates are different and should result in 

a different interpretation of model results.   

Most studies use empirical relationships that provide a single survival rate which 

presumably pertains to most of the lifespan in the absence of fishing.  When this single 

value is used in a demographic analysis, it is assumed that first year survival (S0) in a 

severely depleted population equals that of unfished adults and represents the maximum 

possible value, S0,max.  The calculated rate of population increase is then often interpreted 

as rintrinsic.  Although this can be a useful upper limit biological reference point there is no 

guarantee that a stock can exhibit this degree of compensation and growth, and thus no 

evidence that this represents rintrinsic.  The maximum achievable S0 is likely to be species-
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specific, lower than that of an adult, and a function of size at birth.  Assuming that S0 can 

reach adult levels will clearly tend to overestimate rintrinsic but to what degree is unknown.   

Thus, the rate of increase calculated by setting S0 equal to survival of unfished adults 

gives us an upper bound proxy for rintrinsic, i.e., a quantity related to rintrinsic that may have 

some use for fisheries management.   

In some studies, purported estimates of rintrinsic have been calculated by specifying 

age-specific survival rates, including the first year, based on empirical relationships 

described by Chen and Watanabe (1983) or Peterson and Wroblewski (1984).   However, 

these empirical relationships were not based on modeling severely depleted populations 

but, rather, are describing “normal” or virginal survival.  Therefore, analysis of a Leslie 

matrix based on these parameter values should result in a value of rconditional of zero (i.e., 

the value corresponding to the average growth of a virgin population).  Any departure 

from zero represents measurement error, not intrinsic rate of population increase.  The 

expectation in much of the literature is that estimates of population growth calculated 

from a demographic analysis with no fishing mortality should be positive and that the 

amount of fishing mortality that results in an equilibrium state (rpredicted = 0) represents the 

maximum sustainable fishing pressure that can occur before a species is at risk of 

extinction.  This is false. 

If we consider the hypothetical populations presented in Figure 1b the error in this 

logic is clear.  In the depleted population at time “a”, rconditional is equal to rintrinsic while in 

the virgin population rconditional is equal to zero.  In our depleted scenario, the F that results 

in equilibrium is the maximum sustainable fishing pressure.  In contrast, the removal of a 

single fish per year (i.e., any F > 0) in our virgin population will result in negative 
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population growth under the Leslie (exponential) model (which does not allow for 

compensation).  According to the widespread logic, this means that a virgin population is 

more susceptible to fishing pressure than a depleted population of the same species.  This 

conclusion is obviously false and highlights the strong relationship between the results of 

a simple demographic model and the population size for which model parameters have 

been specified.   

 

Ranking Species 

A number of studies have suggested demographic analyses can be used for 

comparative purposes among species, i.e., to rank species according to their ability to 

withstand exploitation based on calculated values of rate of population increase (Smith et 

al. 1998; Walker and Hislop 1998; Frisk et al. 2002). Therefore, it is worth examining if a 

Leslie matrix or life table can be used to rank species if we can’t get unbiased estimates 

of the intrinsic rate of increase. We consider four proxies for rintrinsic, where rate of 

increase is computed with S0

1) set equal to a constant for all species (Frisk et al. 2002); 

2) set equal to survival of unexploited adults; 

3) set equal to virgin survival, as computed from the formulae of Chen and 

Watanabe (1989) or Peterson and Wroblewski (1984); 

4) solved for after setting adult survival equal to the square of the unexploited 

survival rate, i.e., equal to exp(-2M) (Smith et al. 1998). 

  Species vary in their size at birth and thus presumably in their first year survival. 

However, under approach #1, it is assumed that all populations being considered have the 
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same maximum first year survival (Figure 4).   That is, although we know the species 

vary in life history traits, this approach assumes they don’t vary at all in the parameter - 

maximum S0 - that is likely to play a major role in determining a species’ scope for 

compensation and therefore its intrinsic rate of increase.   Thus, differences among 

species in intrinsic rate of increase are due to differences in fertility and adult survival 

only, according to this model. We would argue it is just as plausible, or more plausible, 

that the first year survival of all species can rise to half way between virgin So and virgin 

adult survival. In fact, the constant S0 approach has important implied assumptions 

regarding scope of density-dependent compensation which are illustrated in Figure 4.  

Population A and the barndoor skate are assumed to have almost no scope for 

compensation while first year survival in population D and the little skate is fully 

compensated reaching close to adult values.  Species B resembles species D in having 

very low survival in virgin populations but the first year survival of D can rise to that of 

adults whereas the first year survival of B can only rise half way to adult survival.  It is 

not clear that this is a reasonable assumption.  Therefore, this ranking of species’ 

resiliency is conditional on the model of compensation being correct, which hasn’t been 

demonstrated. 

 Many studies compute an upper bound proxy for rintrinsic by setting first year 

survival equal to virgin adult survival. This has the advantage of inducing a positive bias 

so that upper bounds to both intrinsic rate, and thus sustainable fishing mortality, can be 

obtained. That is, with this procedure we can conclude certain levels of fishing mortality 

are not sustainable. However, this proxy may or may not be appropriate for ranking 

species’ growth potential. Consider the sand tiger shark Carcharias taurus versus the 
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tiger shark Galeocerdo cuvieri. Both species have large maximum sizes and high 

longevities but the former has two large pups while the latter has dozens of small pups. 

The sand tiger pups probably have high survival under virgin conditions and it is not 

unreasonable to suppose their survival could rise the small distance to equal adult 

survival. The tiger shark pups are much smaller and presumably have much lower 

survival under virgin conditions than the sand tiger. It is less likely that the survival of 

small tiger pups can approach the survival of adults. In other words, the potential scope 

of compensation may be markedly different even for these two apparently similar 

species.  Thus, investigators can disagree over whether the use of this proxy for ranking 

species’ population growth potential is reasonable. 

  Next, consider the estimates that result when first year survival is set equal to the 

Chen and Watanabe (1989) or the Peterson and Wroblewski (1984) estimates.  All the 

estimates of population growth rate should be close to zero so all we’re getting from this 

procedure is measurement error which clearly is not a basis for ranking species. 

Finally, consider the procedure of Smith et al. (1998).  These investigators 

recognized the problems that result from the density-independent nature of demographic 

models and began the process of developing a methodology and a biological bench mark 

which is comparable across species.  The main assumption in their model is that a 

population being fished to produce maximum sustainable yield (MSY) will be at half of 

the virgin stock size and will have adult mortality equal to Z = F + M = 2M.  They then 

assume that any density-dependent compensation occurs in Sjuv (survival of juveniles) 

rather than simply in S0.  With these clearly stated assumptions, they then follow the 

methodology of Vaughan (1977) and solve the model for the Sjuv that results in 
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equilibrium under the MSY fishing conditions.  They then remove the fishing mortality 

from the model and solve for the resulting instantaneous rate of population growth which 

they term “rebound potential” or r2M.   In this way they have attempted to standardize the 

level of density-dependent compensation in different species by deriving an estimate of 

Sjuv that is directly related to the life history parameters of the species.  Their r2M may be 

a valid proxy for rintrinsic, and has the potential to be used in the comparative demography 

among species.  

Although the Smith et al. (1998) approach has avoided some of the main pitfalls 

of demographic analysis by accounting for density-dependent compensation through 

clear logical assumptions, their assumptions have not been validated and their procedure 

provides no indication of how far these “rebound potentials” may be from rintrinsic.  Thus, 

managers are still faced with uncertainty about the maximum sustainable fishing 

pressure.  To determine this, an actual estimate of rintrinsic is required. 

 

Advances in Methodology 

The absence of detailed information about a depleted population necessitates the 

use of alternative methods to estimate rintrinsic.  There are two aspects to the problem:  1) 

determining (parameter) values of rconditional that are tied to a corresponding stock size and 

2) determining rintrinsic from two or more values of rconditional.  The tools to obtain an actual 

estimate of rintrinsic have long been in use in both fisheries and ecological research.  Ricker 

(1975) summarized the early use of the logistic model for fishery assessment (and 

estimating rintrinsic) when only limited data were available.  Although he dealt with 
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biomass models, the mathematics are the same if one substitutes numbers for biomass.  

We build our results on those presented by Ricker. 

We assume that the schedule of age-specific natural mortality for all ages above 

the first, and age-specific fecundity, are known for a particular population. Thus, 

everything is known except three parameters: first year survival, fishing mortality, and 

rate of population increase, robserved.  As previously described (in Uses of the Leslie 

Matrix section), these three parameters are closely linked and if two of the three are 

known, the Leslie model (or a life table) can be used to solve for the third.  For example, 

suppose the instantaneous natural mortality rate is estimated to be 0.2 year-1 and the 

instantaneous fishing mortality rate is determined from a tagging study to be 0.3 year-1. 

Then all survivals except S0 are exp(-.2 - .3) = 0.6. If we know the population is currently 

declining by, say, 5% per year (robserved = ln(0.95) = -0.051 year-1), then the model can be 

solved for S0 using Vaughan’s (1977) method. Then, we can analyze a Leslie matrix with 

the same fecundities and same S0 but with the other survivals adjusted to eliminate the 

fishing, i.e., survival for all ages except the first = exp(-.2) = 0.8. This provides an 

estimate of rconditional.  If the population being modeled is at low abundance, the calculated 

value of rconditional should be close to rintrinsic.   

For the example above, where fishing mortality applies to all ages, there is a 

simpler solution:   

rpredicted = rconditional - F  .     (6)  

Hence, rconditional for our example =  -0.051 + 0.30 = 0.249 year-1.   

The second step is to use the estimates of rconditional to estimate rintrinsic.  We make 

use of the linear relationship between rconditional and population size (eq. (4)), and utilize 
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observations on population behavior at two or more stock sizes.  There are two cases to 

consider.  First, suppose that an estimate of the conditional rate of population growth 

(rconditional) is available along with an estimate of the corresponding population size (N) as 

a fraction of the virgin population size (K), i.e., an estimate of N/K is available.  Then by 

virtue of the fact that the conditional rate is a linear function of population size (Figure 3; 

Equation 4), and the value of rconditional is zero when N = K, we can solve for the intercept 

as: 

conditional conditional
intrinsic

r K rr N K-N1-
K

= = .     (7) 

This methodology differs from all the current approaches to demographic analysis of 

elasmobranchs in that the results do not simply provide a snapshot of population growth 

under a given set of circumstances but rather defines the overall relationship between 

population size and rate of population growth according to the theory of logistic growth.     

The second case is where we have information collected when the population is 

observed at two or more stock sizes, but we do not know how those stock sizes relate to 

the virgin population level.  Instead, we know the relative size of the population at the 

various times.  Let us assume we have survey data that gives relative population size (qN, 

where q is the catchability coefficient, a constant relating the index to the population size 

N) at two points in time and the corresponding information necessary to calculate 

rconditional (Figure 3).   Since we’re assuming the relationship between rconditional and N is 

linear and now know the ratio of qN’s we can derive the following equations:   

intrinsic 1
conditional 1

r   (q K - q Nr  = 
q K

)     (8) 
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intrinsic 1
conditional 2

r   (q K - cq Nr  = 
q K

) ,    (9) 

with c as a known constant (N2 = c N1).  Although these two equations have three 

unknowns (K, rintrinsic, and N1), a unique solution for rintrinsic results as: 

conditional 2 conditional 1
intrinsic

(r  - c r )r  = 
1-c

.    (10) 

Therefore, to obtain an estimate of rintrinsic we can calculate rconditional at two points in time 

for which the relative population sizes are known.   

 

Application to Elasmobranchs 

To illustrate the points in this manuscript we consider two species of 

elasmobranch: lemon shark and barndoor skate.  For both species sufficient data are 

available to illustrate the methods presented in this paper and generate at least 

preliminary estimates of rintrinsic. Our intent is to demonstrate the methodology while a 

more detailed analysis is in preparation for both species.   

Lemon shark-- The lemon shark is one of only a few elasmobranch species for 

which empirical estimates of S0 are available.  Estimates of S0 were obtained for differing 

stock sizes between 1995 and 1999 through a tagging and depletion study in Bimini, 

Bahamas (Gruber et al. 2001; Gruber unpublished).  Results from this study suggest that 

density dependence is occurring in the lemon shark nursery area with an apparent inverse 

relationship between first year survival and size of age-0 population (Figure 5).  Since 

there is no directed fishery for the lemon shark juveniles at Bimini, we assume that F for 

juveniles is equal to zero.  A pre-breeding, birth-pulse, female only Leslie matrix model 

was constructed with age at maturity of 12 years, and a longevity of 25 years. Lemon 
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sharks are believed to have biennial parturition with an average of 12 pups resulting in a 

fecundity term for the matrix of 3 females per year (Feldhiem et al. 2002).  Since lemon 

sharks have been shown to stay in the nursery lagoon at Bimini for the few years of life 

(Morrissey and Gruber 1993), second year survival was set at the mean of first year and 

adult survival.  

 The model was then solved for the population growth (rconditional) that would occur 

given each estimate of first year survival (note that this implies we set survival after the 

second year equal to that which would occur in the absence of fishing; in this case we 

used S = 0.85 based on the Hoenig  (1983) maximum age formulation).  The relationship 

between each years’ estimated population size and rconditional allows us to extrapolate to a 

population growth rate as the population size approaches zero (i.e., rintrinsic) of 0.08 year-1 

(Figure 5).  As a check on the feasibility of this estimate, the model was solved for the S0  

that would be required for the population to grow at a rate of 0.08 year-1 assuming F = 0. 

Given the life history parameters used in our model, S0 would be required to be 110% for 

the population to grow at our estimated rintrinsic.  Clearly this is infeasible and not 

surprising given an extrapolation from five data points.  However, if we use the lower 

confidence limit from our relationship between rconditional and population size, the estimate 

of rintrinsic is 0.03 year-1 which would require a first year survival of 64% (Figure 5).  

Assuming that S0 cannot be greater than adult survival (S = 85%) we now have an upper 

bound for rintrinsic of 0.06 year-1 and therefore an overall potential range of rintrinsic for the 

lemon shark of 0.03 – 0.06 year-1. 

Barndoor Skate--The barndoor skate was reported to be on the brink of extinction 

in 1998 (Casey and Myers 1998).   As international fishing fleets were heavily fishing the 
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northwest Atlantic, National Marine Fisheries Service (NMFS) survey indices for the 

barndoor skate in the Gulf of Maine and Southern New England went from highs of near 

0.8 fish/tow in the early 1960s to lows of near zero for the 1970s and 1980s.  In 1994, 

three large areas on Georges Bank (off Massachusetts) were closed to all mobile fishing 

gear.  Since then, survey indices for the barndoor skate have been increasing at an annual 

rate of approximately 38% providing an estimate of robserved of loge(1.38) = 0.32 year-1.  

An estimate of F = 0.1 year-1 was generated by using a new non-equilibrium form of the 

Beverton-Holt mean length mortality estimator (Gedamke and Hoenig 2006) to estimate 

a total instantaneous mortality rate (Z) of 0.25 to 0.31 year-1,  and then subtracting the 

Pauly (1980) estimate for instantaneous natural mortality (M) of 0.17 year-1.  We assume 

this fishing mortality pertains to all ages because the skates are born at a large size of 

nearly 20 cm total length. Given an F of 0.1 year-1 we solved the Leslie matrix model for 

an S0 of 56% which would be necessary for the population to be growing at an rpredicted of 

0.32 year-1.  Fishing pressure was then removed from the model to generate an estimate 

of rconditional of 0.41 year-1 (Equation 6).   

 Although the barndoor skate population is clearly depleted and our estimated 

rconditional should approximate rintrinsic, we can take our analysis one step further by 

considering relative stock sizes from the NMFS survey data. In 1994 the index was at 

approximately 10% of the high recorded at the start of the time series in 1963.  If we plot 

the 0.8 fish/tow maximum observed in 1963 as representing the virgin condition (i.e., r = 

0) with our estimate of rconditional at the corresponding survey index (0.07 fish/tow), we get 

two points which uniquely define a straight line.  Extrapolating to a stock size of zero 

gives an estimate of rintrinsic of 0.45 year-1 (Figure 6).  If the index in 1963 represents the 
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situation with some fishing, then the rightmost point in Figure 6 should be farther to the 

right, thus lowering the y-intercept.  Because the barndoor skate population was so low in 

1994, the uncertainty in the virgin stock size affects the estimated rintrinsic only slightly.   

 The increase in the barndoor skate population size observed in the NMFS surveys 

provides compelling evidence that the skate population can grow rapidly, in excess of 

30% per year.  The corrections for fishing mortality and population size may be less 

compelling at this point but clearly demonstrate that such calculations are feasible.   

 

Discussion  

We have shown that estimation of the intrinsic rate of increase can be simple if 

observations can be made on a severely depleted population released from fishing 

pressure. This was approximately the case for the barndoor skate. But, in general, 

estimation of intrinsic rate of increase is an involved process that requires some 

information on relative stock size. Thus, most reports of intrinsic rate of population 

increase are wrong sensu strictu although they may have value as an index of, or proxy 

for, the intrinsic rate. Indeed, one may ask if the confusion in the literature between 

proxies and actual estimates of rintrinsic may be little more than a matter of semantics. We 

do not feel this is the case. Rather, we think that the basic requirement for estimating 

rintrinsic from a Leslie matrix (i.e. modeling a depleted population) is largely being 

overlooked and there are three different aspects to the problem.  

First, the confusion is understandable because the standard texts do not emphasize 

the relationships between rintrinsic, rconditional and rpredicted. For example, one textbook 

(Gotelli 1998) defines the symbol r to be the intrinsic rate of increase and then estimates r 
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for a virgin population and after 50% of the population is removed.  We see these 

problems translated to the elasmobranch literature with such conclusions as positive 

values for “virginal intrinsic rate of increase” (Xiao and Walker 2000) (i.e., estimating 

that an unexploited population will increase exponentially forever).  

Second, the perception that intrinsic rate of increase can easily be obtained from a 

Leslie matrix or life table negates the importance of advancing the field through 

development of new techniques. The importance of collecting additional information is 

thus missed. 

Third, results from demographic analyses are being used as the basis for 

management recommendations in ways that are probably not reasonable in the sense of 

not accomplishing what is intended. We now amplify this last point by looking at studies 

that touched on the population growth potential of lemon sharks.  

Cortés (2002) recognized that knowledge about some population parameters is 

uncertain and developed a demographic analysis that translates uncertainty in input 

parameters to uncertainty in output parameters through a Monte Carlo simulation 

procedure.   Although this method clearly addresses an important problem in the 

demographic modeling of species with limited data, the uncertainty defined for model 

inputs provides only subjective opinions about the uncertainty in the outputs (Restrepo et 

al. 1992).  How first year survival (or survival in the first few years) of the lemon shark 

was handled is critical because most of the scope for compensation probably occurs in 

these juvenile stages, particularly the first year or two. A probability density function was 

created for first year survival as a triangular distribution with the lower limit coming from 

the weight-specific methods for unexploited populations and the upper limit coming from 
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the methods that assume equal survival for all ages (in the absence of fishing). The peak 

of the triangular distribution was at the extreme left rather than the right. This, in effect, 

is saying that the most likely amount of compensation is zero and the greater the 

compensation postulated the less likely it is. One cannot be surprised, then, if the 

estimates of rate of population growth averaged over the subjective probability 

distribution of first year survival turn out low. In effect the model is based a priori on an 

assumption of low compensation. 

Although Cortés (2002) clearly stated that his estimates of population growth 

should be treated as indices, the underlying assumption of the study design must be 

recognized in the interpretation of results.  Our concern is that the confusion about 

appropriate modeling may have important management implications.  For example, if 

parameters representing virgin populations are erroneously used to compute intrinsic rate, 

the resulting low estimates may lead to the conclusion that only extremely low catches 

can be tolerated by some species and modest levels of bycatch may lead to stock collapse 

and possibly extinction.  In contrast, a more realistic analysis that recognizes the 

importance of compensation in early life survival may suggest modest fishing pressure is 

sustainable and thus allow for bycatch.  The credibility of scientists may be at stake if 

predictions of collapse prove wrong. 

  

Conclusions 

The use of a basic Leslie matrix or life table demographic analysis on 

elasmobranch populations is generally challenging due to limited information on 

population trends, fishing mortality and life history parameters.  Study designs must 
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carefully consider the information available and take one of three approaches. The first is 

to determine the life history parameters that would occur if the population were 

extremely depleted.  In this case, the instantaneous rate of increase calculated from the 

model can be assumed to approximate rintrinsic and therefore one can estimate maximum 

sustainable fishing mortality.  For most species, however, not enough information is 

available and a second more complex approach must be taken.  One must recognize that a 

basic demographic analysis only provides an instantaneous rate of population growth for 

a specific set of life history parameters associated with a specific population size and not 

rintrinsic.   With additional data, as we present in this paper, it is possible to estimate rintrinsic 

from the results of basic demographic analyses by extrapolating observed population 

growth rates towards zero population size. The third approach, when data are insufficient 

for estimating rintrinsic, is to be content with calculating a proxy for rintrinsic such as an upper 

bound, and presenting it as such.   

Researchers must recognize the close link between the methods of parameter 

estimation, population size and the results of a density-independent demographic model.  

When using age specific estimates of survivorship (e.g., based on Chen and Watanabe 

(1989) or Peterson and Wroblewski (1984)), and without incorporating stock size in the 

analysis, estimates of rintrinsic and maximum sustainable fishing pressure will be 

underestimated.  From a management perspective, this is clearly a conservative approach.  

However, the credibility of scientists and the practice of demographic modeling will be 

thrown into question if predictions of collapse or extinctions are proven wrong.  On the 

other hand, when adult survival is used for all age classes only proxies for rintrinsic are 

generated and there is no guarantee that the population can exhibit this degree of 

 160



compensation.  These estimates must be considered only as upper bounds and used 

cautiously in management decisions.   
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Table 1.  Methods commonly used to determine survival rates in demographic analysis with required 

parameters. Estimates were made with parameters for the barndoor skate from Gedamke et 

al. 2004 (age at maturity (Amat) of 6.5 years, and von Bertalanffy growth parameters (k, Linf, 

and t0) of  0.14 yr-1,  166.3 cm, and -1.29 yr, respectively), an assumed maximum age (Amax) 

of 25 years, and a water temperature of 8.5 0C (Myers et al. 1997). Methods used:  Hoenig 

(1983); Pauly (1980), Chen and Watanabe (1989), Jensen (1996), Petersen and Wroblewski 
 
 
 
 

    Pauly      Chen and Peterson and 

Age Hoenig (Linf, k, Water Jensen Jensen   Watanabe Wroblewski 

  (Amax) temperature) (Amat) (k)   (Age, k, t0) (Weight at age) 

0 0.846 0.843 0.776 0.811  0.429 0.517 

1 0.846 0.843 0.776 0.811  0.600 0.649 

2 0.846 0.843 0.776 0.811  0.684 0.714 

3 0.846 0.843 0.776 0.811  0.733 0.752 

4 0.846 0.843 0.776 0.811  0.765 0.777 

5 0.846 0.843 0.776 0.811  0.787 0.795 

6 0.846 0.843 0.776 0.811  0.803 0.808 

7 0.846 0.843 0.776 0.811  0.844 0.818 

8 0.846 0.843 0.776 0.811  0.844 0.826 

9 0.846 0.843 0.776 0.811  0.844 0.832 

10 0.846 0.843 0.776 0.811  0.844 0.837 

11 0.846 0.843 0.776 0.811  0.844 0.841 

12 0.846 0.843 0.776 0.811  0.844 0.844 

13 0.846 0.843 0.776 0.811  0.844 0.847 

14 0.846 0.843 0.776 0.811  0.844 0.850 

15 0.846 0.843 0.776 0.811  0.844 0.852 
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Figure Headings 
 

Figure 1.    a.  Population dynamics and density-dependent response in rpredicted to the 

addition and removal of two levels of constant fishing pressure F, 

according to the logistic model of population growth.  

b.  Steady state (point a) and logistic growth of populations recovering from 

three levels of exploitation (point b) and relationship to model predictions 

of exponential growth. The shaded regions show where logistic and 

exponential models give similar results  

Figure 2.  Population size assuming initial population size and schedules of reproduction 

and survival are known; as predicted under fishing pressure (rpredicted),  under 

conditions of no fishing pressure (rconditional) and at the maximum rate (rintrinsic)  

assuming a stable age distribution, and as observed from catch data (robserved) if a 

stable age distribution is not present as an initial condition.  

Figure 3.  The instantaneous rate of population growth, rconditional,  for a stock as a function 

of stock size under logistic growth when fishing mortality is zero.  When fishing 

mortality = F on all ages, rpredicted  =  rconditional – F =  rintrinsic (1-N/K) – F.  

Relationships used to derive equations (8)-(10) for rintrinsic based on survey indices 

are indicated.  q is a constant relating the index to actual population size. 

Figure 4.  Model for compensation in which all species attain the same maximum value 

of S0 (indicated by the dashed line) regardless of first year survival in a virgin 

population (bottom of bars) and regardless of adult survival in the absence of 

fishing (top of bars).  Species A, B, C and D represent hypothetical populations.  

For the little, winter and barndoor skates adult survival is as used in Frisk et al. 
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(2002) and first year survival was calculated using the method of Peterson and 

Wroblewski (1984).  Note the differing levels of compensation that are assumed 

when a constant S0 is used.   

Figure 5.  Upper solid line:  relationship between first year survival S0 of lemon sharks 

and population size of juveniles at Bimini Bahamas as determined from a tagging 

depletion study.  Note one additional data point has been calculated beyond that 

presented by Gruber et al. (2001).     

Lower solid line:  relationship between rconditional and corresponding population 

size (first year survival used to calculate each rconditional is also indicated).  The y-

intercept represents the estimated rintrinsic and the dotted lines represent the 95% 

confidence intervals for the regression.  Also shown on the y-axis are the first 

year survival rates corresponding to three values of rconditional.  The shaded area 

shows the range of possible values for rintrinsic consistent with the data and 

consistent with the maximum value of S0 not exceeding adult survival. 

Figure 6.  Relationship between population growth rate and NMFS survey index of 

population size for the barndoor skate.  Point ‘a’ is robserved based on change in the 

survey index over time, point ‘b’ is calculated rconditional at abundance = 0.07 

fish/tow, and point ‘c’ indicates estimated rintrinsic. The dashed line indicates the 

slight reduction in rintrinsic that would occur if the virgin population size (0.8 

fish/tow) is an underestimate. 
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Figure 6.   
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Total Mortality Rates of the Barndoor Skate, Dipturus laevis, in the Northeast 

United States, 1963-2005 
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Abstract 

The barndoor skate population in the offshore waters of the Northeast United 

States was reported to be possibly on the brink of extinction in 1998.  Managers were 

faced with the task of assessing a population with limited life history information and 

survey data that contained only a few animals a year.  One of the key pieces of 

information to assess the threat to the species is the current mortality rate.  Unfortunately, 

estimating this parameter through classical approaches proved difficult.  In this study we 

develop variants of commonly used methodologies to estimate total mortality.  We 

present two methods:  a length based estimator and one based on the catch rates of 

recruits and adults.  Both approaches provided similar results suggesting that mortality 

rates were very high (0.89 – 1.0) in the late 1960’s.  Recently, and at approximately the 

same time as the large area closures on Georges Bank, the total mortality rate appears to 

have been reduced to very low levels.  
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Introduction 

The barndoor skate Dipturus laevis is one of seven species in the United States 

Northwest Atlantic skate complex.  Although in the past there have been a limited 

number of vessels targeting the species, it is now only caught as bycatch in the 

groundfish trawl and scallop dredge fisheries.  The species received little attention until a 

recent article published in Science reported that the barndoor skate might be on the brink 

of extinction (Casey and Myers 1998).   Casey and Myers (1998) reported that the 

barndoor skate, once a common bycatch species off southern Newfoundland, had become 

locally extirpated in parts of its northern range due to overfishing and the pattern of 

decline was similar throughout its range. 

The National Marine Fisheries Service (NMFS) began the difficult task of 

evaluating the threat to the species with virtually no information available on the life 

history of the species and only limited information available from a 40 year time series of 

trawl survey data.  One of the key parameters necessary to accurately assess stocks, in 

this process, is the level of total mortality that is occurring in the population.  Total 

mortality results from both natural mortality (M) and fishing mortality (F) and when 

compared to trends in abundance can provide valuable insights into the population 

dynamics of the species.   

Unfortunately, estimating this parameter through classical approaches proved 

difficult.  Data from the Northeast Fisheries Science Center (NEFSC) groundfish surveys 

on Georges Bank and the Gulf of Maine was extremely limited as survey catches had 

declined to near zero soon after the start of the survey’s in 1963..  In fact, the NEFSC fall 

groundfish survey, which is the longest standardized time series of data available, caught 
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only 116 individuals in the 30 years between 1970 and 2000.  In seven of those years, no 

barndoor skates were observed in the survey.  An obvious recovery in the population has 

only been evident since the late 1990’s as more individuals have been caught and survey 

indices have been steadily increasing.   

In this study we evaluate the historical and current mortality on the barndoor skate 

population by developing two variants of commonly used methodologies.   We use two 

types of data from the NEFSC fall survey:  mean lengths and catch rates.   Mean length 

data are commonly used to estimate mortality through the Beverton-Holt mean length 

mortality estimator because this method has limited data requirements.  Gedamke and 

Hoenig (2005) developed an extension of this method for utilization in non-equilibrium 

situations but the application of this approach to an elasmobranch required the 

incorporation of trends in recruitment and further developments.  Our second data source, 

catch rates, is also commonly used to estimate mortality through the Heincke method.  

However, this approach is formulated to include only information from two consecutive 

survey years (Heincke 1913, cited in Ricker 1975).  Due to the variability of the survey 

indices available for the barndoor skate, we use the recent generalization of this approach 

which includes information from multiple years when survival is assumed to have been 

constant (Gedamke, 2006). 

 

Materials and Methods 

Available Trawl Survey Data 

The National Marine Fisheries Service has conducted research surveys in both the 

US and Canadian waters of the Northwest Atlantic for over three decades.  Surveys have 
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been conducted in the fall and spring beginning in 1963 and 1968, respectively (NEFSC 

1999).  A stratified random sampling design is used with stations stratified based on 

depth, latitude, and historical fishing pattern.  The offshore surveys were designed to 

sample groundfish and have used a Yankee bottom trawl.  Surveys were generally 

conducted in 27 to 366 meters of water, with an occasional deeper tow in the canyons of 

the continental shelf.   

The spring and fall surveys are the primary indices used by the skate plan 

development team (PDT) and the New England Fisheries Management Council for the 

assessment of the NW Atlantic skate complex.  In this study we focus on the fall survey 

as catch rates are generally higher than those in the spring and it provides the longest time 

series of standardized data.  Barndoor skates are rarely caught in the mid-Atlantic survey 

so we also limit ourselves to an analysis of the New England offshore survey which 

covers Georges Bank and the Gulf of Maine.  Between 1963 and 2005, between 167 and 

374 survey tows were conducted in these regions.  At each station the number and 

aggregate weight of each species is recorded in addition to the total length of each 

individual. 

 

Model Development 

Estimating Mortality from Mean Lengths  

The basic process behind our methodology is the decrease in mean lengths that 

occurs when a population is exploited.   Baranov (1919; cited in Ricker, 1975) was 

apparently the first to deduce this concept and note that the equilibrium mean length in a 

fish population is inversely related to the mortality rate experienced by the population.  
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Beverton and Holt (1956, 1957) derived an expression for estimating the total 

instantaneous mortality rate, Z, from the mean length, L .  The Beverton-Holt mortality 

estimator has received widespread use, especially in data-limited situations, because the 

only required information are the von Bertalanffy growth parameters K and L∞, the so-

called length of first capture (smallest size at which animals are fully vulnerable to the 

fishery and to the sampling gear), Lc, and the mean length of the animals above the length 

Lc. 

There are six assumptions behind this method.   

7) Asymptotic growth with known parameters K and L∞ which are constant 

over time. 

8) No individual variability in growth. 

9) Constant and continuous recruitment over time. 

10) Mortality rate is constant with age for all ages t > tc. 

11) Mortality rate is constant over time.  

12) Population is in equilibrium (i.e., enough time has passed following any 

change in mortality that mean length now reflects the new mortality level).  

The final assumption of equilibrium conditions tends to be the hardest to meet in 

real world situations.  Gedamke and Hoenig (2005) have recently relaxed the need to 

meet this assumption by developing a transitional form of the mean length statistic for 

use in non-equilibrium conditions.  This makes the approach applicable in a broader 

range of situations.  In the case of the barndoor skate, however, we have to consider the 

reproductive strategy of the species and address the fact that assumption #3 (constant 

recruitment) is clearly violated.  As an elasmobranch, the barndoor skate has a rate of 
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recruitment which is strongly tied to the adult population size (Gedamke 2006).   Simply 

applying the Gedamke and Hoenig (2006) approach, without taking trends in recruitment 

into consideration, will result in mortality estimates that are biased high when recruitment 

is increasing (during a population recovery) and low when recruitment is declining 

(during a population decline; see Appendix A).   

To address variable recruitment, the continuous model of Gedamke and Hoenig 

(2006) must be recast in a discrete form.  We start this approach with an analysis of the 

length frequency data from the fall NEFSC groundfish survey.  This is the longest 

standardized time-series of data available and provides an index of recruitment from 

1963-2005. A cumulative plot of all individuals captured during the entire time series 

demonstrates that barndoor skates become fully vulnerable to the gear at approximately 

55 cm. Using life history parameters from Gedamke et al. (2005; k = 0.1414 yr -1, Linf = 

166.3 cm total length, and t0 = -1.29 yr) a length age conversion was applied and an age at 

full recruitment to the gear was estimated at 2 years old, corresponding to a size of 54 to 

69 cm.  The number of two year olds caught per year was calculated and this vector of 

recruitment was then projected forward in time.  Given a total mortality rate for each 

year, the numbers at age in each year are predicted.  Prior to 1963, no data was available 

and we assumed constant recruitment at a value that was the mean of the first three data 

points in the time series (1963-1965). 

To simplify our explanation of the methodology, only one change in mortality is 

presented.  In practice, and in our application that follows, additional changes are 

included in the model depending on the nature of the data being analyzed.  The overall 

approach is illustrated in Figure 1 (projection Matrix) where a single change in mortality 
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is indicated as having occurred in 2001, and we have assumed that total mortality (both 

fishing and natural mortality) is constant across all age classes.  Thus, the only 

information required to predict the numbers at each age, in each year, is the total 

mortality rate in each period (Z1 and Z2), the year in which mortality changed (T1), and 

the given vector of recruitment.  The age to length conversion is then used in conjunction 

with the numbers at age to calculate a predicted mean length in each year.   

The estimation of the unknown parameters (Z1, Z2, and T1) can then be 

accomplished by selecting parameters which minimize the difference between the 

observed and predicted mean lengths.   We use the method of maximum likelihood 

estimation.  The probability density function of a normally distributed sample mean x , 

when the sample size is m, is 

( )
2

22
( )

2
2

2
; ,

µ
σ

π σ
µ σ

− ⋅ −
= ⋅

m xm
f x e .   (1)  

 

The product likelihood function ( Λ ) for n years of observed mean lengths results 

by substitution:  µ = E( L ),  σ2  = Var(L) = variance of lengths that are greater than Lc. 

Thus, 
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where my is the number of fish greater than size Lc measured in year y, yL  is the 

observed mean length in year y, and Lpred,y is the mean length computed for year y using 

our population projection just described.   The log-likelihood is proportional to   
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Equation (3) was maximized, and parameters estimated using the PROC NLP 

procedure in SAS version 9 (SAS, 2004).  Initially the year in which the mortality change 

occurred (T1) was specified and Z1, Z2, and the variance ( 2σ ) were estimated.  The 

likelihood surface was then evaluated to detect local maxima and any potential problems 

with fitting the model with an increased numbers of parameters.  This approach also 

provided reasonable initial estimates for starting our broader fit to the data.  If the year in 

which a change in mortality occurs is unknown the model can be fitted separately for 

each year where the change is possible.  The year of change which maximizes the 

likelihood provides the maximum likelihood estimates.  Alternatively, the year of change 

can be estimated along with the other parameters. 

 

 

Estimating Survival from Catch Rates 

To obtain additional estimates of total mortality the application of another 

approach using catch rates from the fall NEFSC survey data is presented here.  A detailed 

description of the derivation of the model is presented in Gedamke (2006) and will only 

be described briefly.  The basic premise is that the annual survival rate, S, can be 

estimated from annual surveys using a longitudinal catch curve to follow a cohort over 

time. This is based on the relationships that 
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  Na+1,t+1 = S Na,t     (4) 

 

and 

 

  Iat = qNat       (5) 

 

where Na,t is the number of animals of age a alive at the time of the survey in year t, Iat is 

an index of abundance of the animals of age a in year t, and q is the catchability 

coefficient. The survival rate can thus be estimated by linear regression of the index on 

the previous year’s value for the same cohort. The assumptions are that survival and 

catchability are both constant over time and age, and that the ages of the animals 

observed in the survey can be determined.   

Heincke (1913, cited in Ricker 1975) recognized that it can be difficult to get 

accurate ages for the older animals in a population and suggested pooling the older age 

classes. In other words, if a cohort of recruits can be separated from the rest of the age 

classes an annual survival rate can be estimated by comparing the total number of 

animals in one year with the number of animals above recruit age (or size) in the 

following year.  Heincke formulated the estimation procedure in terms of a cross-

sectional catch curve (age composition observed in one year) rather than as a longitudinal 

catch curve (changes in abundance of specified cohorts are monitored over time). Cross-

sectional catch analysis is commonly used in stock assessments but has the limiting 

assumptions of constant survival and catchability over time and over all age classes.  The 

Heincke method, also commonly used in stock assessment, does not have the assumption 
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of constant survival over time but was formulated to use information from two 

consecutive survey years.  For application to the limited data available for the barndoor 

skate we utilize the generalization of this method developed by Gedamke (2006).   

We consider just two age groups in the population – recruits and previously 

recruited animals. Recruits are defined to be those animals that will join the previously 

recruited animals the next year (if they survive the year). The relationship between the 

number of previously recruited animals in year t+1, Nt+1, and the number of recruits Rt 

and previously recruited animals Nt in year t is: 

 

  Nt+1 = S Nt + φ Rt  ,            t = 1, …, T-1  (6) 

 

where φ and S are the survival rates of the recruits and previously recruited animals, 

respectively, and T is the number of years of survey data. 

Due to the limited information and relatively low survey indices for the barndoor 

skate, we make the assumption that non-recruit and recruit survival is the same.  This is 

not an unrealistic assumption as barndoor skates are fully recruited to the gear at age 2 

and at a size of approximately 60 cm total length.  This results in the following equation:   

 

It+1 = S ( It +  rt) ,            t = 1, …, T-1.  (7) 

 

This model can then be fitted to the data and S estimated, using the method of 

least squares.  Thus, we minimize 
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where the predicted index is given by (7). 

 

Results 

Estimating Mortality from Mean Lengths  

The mean lengths recorded from the fall NEFSC survey were highly variable and 

likely to be the result of small sample sizes (Figure 2).  Nonetheless, a clear downward 

trend was observed in the 1960’s and an upward trend was observed in the 1990’s.  The 

time series of catch rates of 2 yr olds caught in the survey also showed a downward trend 

in the 1960’s and an upward trend in the 1990’s.  The time series also showed an 

apparent cyclical pattern to the recruitment with a strong year class arising every 3 to 5 

years (Figure 3).     

We first assumed that there were two changes in mortality, hereinafter referred to 

as the two-break model.  This is the simplest model that would explain the decline in 

survey indices at the start of the time series and then also provide a mechanism for the 

observed recovery.  This also provides a starting point for our analysis with the least 

number of parameters to fit:  first year of change (T1), the second year of change (T2), the 

three different mortality levels (Z1, Z2, and Z3), and the variance ( 2σ ).  Our initial grid 

search over all possible combinations of years of change and inspection of the likelihood 

surface resulted in a clear maximization of the function with the first change in mortality 

occurring near the start of the time series and the second change occurring in the mid 

1990’s (Figure 4).   

The model was then refitted to the data with all 6 parameters being estimated and 

initial guesses for T1 of 1960 and T2 of 1995.  The first year of change was estimated to 
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be 1962.8, and the second year of change to have occurred in 1992.5.  The corresponding 

estimates of total mortality were 0.30, 0.88, and -0.01 for Z1, Z2, and Z3, respectively 

(Figure 5).  No apparent pattern to the residuals was observed.  The cyclical pattern in 

recruitment perpetuated itself through our projection and predicted mean lengths had 

similar peaks and dips to that which was observed.  Between 1976 and 1984 an 

unrealistic spike in our predicted mean length resulted from a total lack of recruits being 

captured.  In this time period, the predicted mean lengths result from the growth of the 

1976 cohort, and only when new recruits were observed in 1984 do our predicted mean 

lengths once again fall in line with the observed values.    

Although there was no pattern to the residuals in the two-break model, it is 

unlikely that the barndoor skate population began a recovery under the high (0.89) levels 

of total mortality that were predicted.  Thus, we added another change in mortality (three-

break model) and repeated the same procedure as for the two-break model.  The results of 

our initial grid search evaluation and the corresponding likelihood surfaces are too 

complex to adequately present here.  However we conducted an extensive analysis to 

evaluate the behavior of the fitting procedure.  The results of these grid searches did find 

some uncertainty and local maxima surrounding the estimation of the second year of 

change and the initial estimate for this parameter into the fitting procedure proved 

important.  However, the estimates for all other parameters were relatively consistent 

with the years of change  never varying more than a year from the final results presented 

and the estimates of mortality never varying more than 0.05.    
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The three break model estimated the years of change to be 1962.9, 1977.8 and 

1994.4.  Mortality in the four time periods was estimated to be 0.31, 0.90, 0.41, and 0.04 

for Z1, Z2, Z3, and Z4 respectively (Figure 6).   

 

Estimating Survival from Catch Rates 

 An evaluation of survey indices from 1963 – 2005 showed significant declines at 

the start of the time series and then an obvious recovery beginning in the late 1990’s 

(Figure 3).  A log transformation of this data allows us to view the rate of change of the 

population and it appears that the decline occurred at a relatively consistent rate through 

1975 (Figure 7).   The recovery, on the other hand, appears to have occurred in at least 

two distinct phases.  A linear fit to the data from 1984-2005 shows a clear pattern to the 

residuals and indicates at least one significant change in mortality occurred.   There 

appears to be a break in the trend around 1996 which is soon after three large areas on 

Georges Bank were closed to fishing.   

 Using our observations from the survey indices and the results of the mean length 

analysis just presented, we estimated the total mortality occurring on the population in 

three different time periods.  The first predicted data point available for this analysis is 

1964 because the number of recruits and non-recruits from the previous year are used to 

make the prediction.  Using data from 1964-1980, total mortality was estimated to be 

1.04.  The estimation is driven heavily by the decline in the first few years and is 

insensitive to the inclusion or exclusion of data from 1970-1980.  On the other hand if 

1965 is used as the first data point, total mortality is estimated to be 0.89.   
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 Estimates of total mortality for the recovery were done in two phases with the 

break points estimated by the mean length estimator.  The total mortality estimate from 

1984-1992 is 1.34, while the estimate of total mortality from 1984-1994 is 1.06.  For the 

most recent years total mortality is estimated to be 0.23 from fitting both 1993-2005 and 

1995-2005.   The results were relatively sensitive to the inclusion or exclusion of data 

from 1992 when the survey caught no individuals above the recruit size.  Regardless of 

the years selected for the analysis, results ranged from 0.67 to 1.33 prior to 1991-1994 

and from -0.1 to 0.37 during the last 10 years.  This suggests a clear drop in mortality 

occurred by 1994.  To further illustrate this, estimates were made in five year bins which 

smoothed the results but clearly show the declining trend in mortality that occurred 

during the mid 1990’s (Figure 8).   

 

Discussion 

The results of our study show that, although information was limited, the use of 

mean length data and pooled catch rate data provided insights as to the relative 

exploitation pattern in the barndoor skate.  Both approaches presented in this study 

suggest that fishing pressure was at very high levels at the start of the time series and was 

reduced to very low levels in the mid 1990’s (Figure 9).   

Although the current estimates of total mortality from the mean length approach 

are clearly too low, the overall pattern of exploitation is compelling.    The difficulty in 

obtaining accurate absolute estimates of total mortality arises from the lack of 

information in the entire middle part of the time series.  Estimates from the two-break 

model suggest a total mortality of 0.89 was occurring until the early 1990’s when an 
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instantaneous drop to near zero mortality occurred.  It is unlikely that this relatively high 

constant mortality rate was present in the population for over 30 years and that the 

population began to recover under these conditions.  Therefore the mortality rate prior to 

the predicted drop in 1992 would be too high and an extremely low value is necessary for 

the mean lengths to recover the values observed during the last 10 years. 

Results from the three break model suggest a two-step reduction in mortality 

beginning in 1978.  Not only does this shift the current estimate of mortality in a more 

realistic direction, the predicted change in mortality occurs at approximately the same 

time as the cessation of the distant water fleets fishing activity on Georges Bank.  With 

more information in the middle part of the time series more accurate absolute estimates of 

mortality could be generated.   

An alternative explanation for the low estimates of current mortality can be drawn 

from Figure 5.  The pattern of cyclical recruitment can be seen occurring every 3-5 years 

except during the middle part of the time series when no individuals were captured.  The 

only place where this pattern breaks down is the seven year period between 1995 and 

2002.  Although there is a weak signal of increased recruitment in 1999, the magnitude of 

difference is not nearly as clear as other places in the time series.  If, for one reason or 

another, the survey missed a pulse of recruits during this year, the model would need an 

extremely low value of mortality to compensate and produce a tight fit to the larger 

sample sizes at the end of the time series.   

It is important to note that although the absolute estimates of mortality may be 

variable due to measurement error, the relative changes in mortality and the estimates of 

when changes in mortality occurred are consistent throughout our mean length analysis.  
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Confidence in the mean length model can also be gained from an inspection of the 

predicted values, observed values and the residuals of the fit.  There is no apparent 

pattern providing no indication that the model is mis-specified or that our assumptions 

are unrealistic.  The mean length data initially appeared to be highly variable, and 

potentially unusable.  However we have shown that this pattern results from variable 

recruitment and the cyclical addition of a large number of small animals to the 

population.   

An additional benefit of the mean length analysis is the ability to estimate the 

mortality level that was occurring prior to the time series and available data.  This 

estimate (0.3) is clearly driven by our assumption of constant recruitment prior to 1963 

but is also extremely reasonable considering our understanding of both natural mortality 

and the fishing pressure that was occurring prior to the time series.   

In our mean length model formulation, due to a lack of information, we were 

forced to assume that fishing mortality is knife-edge and applied to all ages equally.  In 

cases where more information is available (i.e. a selectivity curve from a tagging study), 

one could easily apply age specific estimates of total mortality. There would be no 

resulting increase in the number of parameters that have to be estimated as a given vector 

of partial selectivity will simply scale the differing levels of mortality (Z1, Z2, Z3,…Zn) 

already in the model we presented.   

The results and conclusions from our catch rate method are in agreement with 

those from the mean length analysis.  During the decline of the barndoor skate 

population, our catch rate analysis suggests a total mortality 0.9- 1.0 depending on which 

years of data are included in the analysis.  The stability of our results can be attributed to 
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the significant amount of information contained in the relatively large survey catches in 

the first four years of the time series (1963 – 1966).   Estimates from the early part of the 

recovery in the early 1990’s were made with data that contained no more than three 

individuals caught per year.  As a result, estimates could have ranged from 0.7 to 1.3 

depending on which years were included in the analysis and the inclusion or exclusion of 

a zero catch year in 1992.  Estimates using data after 1992 and 1994 (years mortality 

changed as predicted in the mean length analysis) were stable and consistently estimated 

at 0.23.  Early in our analysis, prior to receiving data for 2005, estimates of 0.14 were 

obtained.  A sensitivity of results to the addition of the most recent years of data showed 

results could range from -0.1 to 0.37 depending on which years were included. 

Although there is some variability and uncertainty in the absolute estimates 

presented in our study, the pattern of exploitation is clear.  There is no evidence to 

suggest that the barndoor skate population is experiencing high levels of mortality and is 

in any current threat in the area studied.  In fact, the data strongly support the idea that a 

significant reduction in mortality occurred sometime around the closure of the areas on 

Georges Bank and that the current mortality level is very low. 
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Figure 1.  Conceptul framework of projection used to predict the number of animals at each age 

from a vector of recruitment and a total mortality rate in each year.  A single change in 

mortality is indicated in 2001 and a hypothetical maximum age of 6 is represented.  The 

number of recruits (dashed box) is projected forward given the mortality rates in each 

year (dashed triangle) to obtain a number of animals at each age in 2004.  These 

predicted numbers in 2004 are then converted to a mean length through an age to length 

conversion assuming an average size for the animals in each age class.   
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Figure 2.  Observed mean lengths and sample sizes of all animals greater than 60 cm (Lc) captured in 

the NEFSC fall groundfish survey.      
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Figure 3.  Survey indices for number of recruits (2 year olds) and non-recruits (3 years and 
older) from the NEFSC groundfish survey.     
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Figure 4.  Likelihood surface for all possible combinations of years in which two changes in 

mortality occurred.  The time of the second change is clearly indicated between 1990 and 

1996 while the time of the first change is indicated less precisely to have occurred around 

1960. 
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Figure 5.  Results of the two-break model indicating an increase in mortality in 1962.8 and a 

decrease in 1992.5.  The residuals of the predicted versus observed values are presented.   
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Figure 6.  Results of the three-break model indicating an increase in mortality in 1962.9, a decrease 

in 1977.8, and a further reduction in 1994.4.  The residuals of the predicted versus observed 

values are presented.   
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Figure 7.  Log transformed survey indices from NEFSC fall groundfish survey.  A single linear fit 

is presented for the decline and two segments are fit to the recovery.   
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Figure 8.  Results of estimating mortality over 5 year periods.  Estimates are plotted against the midpoint of 

each bin and the standard error of each estimate is indicated.  Note that estimates for years that are 

within three years of each other use overlapping information.   
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Figure 9.  Comparison of results from both the mean length and catch rate approaches.  The range 

of estimates for the catch rate method is indicated by the shaded grey region.   
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Appendix A 

 

 

 

Appendix Figure 1.  Results of the two-break model assuming constant recruitment.  Residuals 

and sample sizes are presented.  Results are presented below figure  
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Results: 

 

 

Z1 = 0.11   T1 = 1958.9 

Z2 = 0.60   T2 = 1990.1 

Z3 = 0.28 
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Appendix A; Figure 2.  Results of the three-break model assuming constant recruitment.  Residuals 

and also are presented.  Results are presented below the Figure  

 

0

10

20

30

40

50

60

70

80

90

100

110

120

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

Year

M
ea

n 
Le

ng
th

 (c
m

)

-20

0

20

40

60

80

100

120

R
es

id
ua

l

Predicted Mean
Observed Mean
Residual

Three-Break Model.  Mean Length Estimator 

Results: 
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Z2 = 0.60   T2 = 1989.0 

Z3 = 0.33   T3 = 1995.0 

Z4 = 0.27 
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Appendix A; Figure 3.  Results of two and three-break models including actual recruitment or 

assuming constant recruitment.  The expected bias of the constant recruitment estimate is 

indicated by the bold arrows.   
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Chapter 8 

 

 

Stock-Recruitment dynamics and the Maximum Population Growth Rate of the 

Barndoor Skate Dipturus laevis in the Northeast United States 

 

 208



Abstract 

In 1998, the barndoor skate, Dipturus laevis, was reported to have been locally 

extirpated in parts of its northern range and potentially be on the brink of extinction.  

Managers were faced with assessing the species with virtually no information other than 

a limited number of individuals that had been observed in annual groundfish surveys.  

Since that time, a number of the primary life history parameters have been estimated but 

the population dynamics of the species remain unexplored.  In this study we use 

information from the National Marine Fisheries Service (NMFS) annual groundfish 

surveys to investigate two critical components of the barndoor skate population 

dynamics:  the relationship of recruitment to spawner abundance and the maximum 

population growth rate.  A compelling stock-recruitment relationship was found in the 

fall survey data suggesting that recruitment is closely tied to spawner abundance.  The 

Ricker and Beverton-Holt stock-recruit models were fitted to the survey data and an 

estimate of the slope at the origin was generated.  These parameters provided an estimate 

of the maximum annual reproductive rate and were then converted to estimate an 

instantaneous maximum population growth rate of 0.35 yr-1.  A second analysis was also 

conducted using a Leslie matrix and data from the NMFS survey.  Observed rates of 

population change were used to estimate first year survival and incorporate density 

dependant logic into the density dependant framework of a Leslie matrix demographic 

model.  From this method, the instantaneous maximum population growth for the 

barndoor skate was estimated to be 0.36 to 0.45 yr-1.  Our results suggest that the species 

may be more resilient to fishing pressure than previously believed and capable of 

growing at an annual rate in excess of 40%.   
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As an elasmobranch, the barndoor skate (Dipturus laevis) was believed to be 

particularly vulnerable to fishing mortality and reported to be close to extinction in parts 

of its northern range (Casey and Myers 1998).  A lack of both basic life history 

information and an understanding of the overall population dynamics of the species have 

hampered the further assessment and management of north Atlantic populations. 

Although recent studies have provided estimates of basic life history parameters 

(Gedamke 2006), fundamental aspects of the species population dynamics remain 

unexplored. Because the observed decline and the potential for extinction of the species 

were attributed to overfishing, estimates of the maximum population growth rate are 

necessary to understand the population dynamics and manage the species.  

Recently, this question has been approached by the use of both stock-recruit and 

demographic models to determine the intrinsic, or maximum, rate of population increase 

(rintrinsic) and therefore the maximum sustainable fishing pressure (Myers et al. 1997; 

Myers et al. 1999; McAllister et al. 2001; Gedamke 2006).  An important aspect of this 

process, and commonly overlooked in elasmobranch demographic models, is the 

recognition that a population will only grow at a maximal rate at the lowest stock sizes.  

Only in this condition will competition for resources be at a minimum and the subsequent 

increased survival result in rintrinsic.   

Stock-recruitment models address this issue as they incorporate stock size 

explicitly in the analysis and are formulated to estimate rintrinsic at low population sizes.  

The underlying relationship in these models, between spawners (stock) and recruits, is a 

critical component to our understanding of the population dynamics of a species and is 

directly tied to population size.  In its simplest form these models describe an inverse 
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relationship between stock size and recruitment to the population.   The slope at the 

origin (i.e., at the lowest stock sizes) can be converted to an estimate of the maximum 

annual reproductive rate.  The maximum annual reproductive rate represents the number 

of spawners produced by each spawner per year and can be used to obtain an estimate of 

the maximum population growth rate (Myers et al. 1997).   

Classic demographic analyses (i.e., life table or Leslie matrix), on the other hand, 

are independent of stock size and provide an estimate of the exponential rate of 

population growth (or decline) based on a fixed set of life history parameters.  

Alternatively, the model can be thought of as providing the current (short-term) rate of 

population change under current conditions.  Only when schedules of survival and 

reproduction from a depleted population are used in the construction of the model will the 

estimated rate of population growth equal rintrinsic.  Unfortunately, parameter estimates 

from depleted populations are rarely available and therefore estimating rintrinsic remains 

difficult.  In a recent study, Gedamke et al. (2006) addressed this dilemma and provided 

suggestions as to how to incorporate stock size and the logic of density dependant 

compensation into the density-independent framework of a Leslie matrix demographic 

model.   

In this study, we use information from the National Marine Fisheries Service 

(NMFS) annual groundfish surveys on Georges Bank and the Gulf of Maine to develop 

both a stock-recruit and Leslie matrix models to gain insights on the population dynamics 

of the barndoor skate.   We follow the methodology of Myers et al. (1997, 1999) for the 

analysis of the stock-recruit relationship and that of Gedamke (2006) for the demographic 

analysis.   
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Materials and Methods 

Available Trawl Survey Data 

The National Marine Fisheries Service has conducted research surveys in the both 

the US and Canadian waters of the Northwest Atlantic for over four decades.  Surveys 

have been conducted in the fall and spring beginning in 1963 and 1968 respectively 

(NEFSC 1999).  A stratified random sampling design is used to provide an unbiased 

estimate of fish availability to the sampling gears. Stations are stratified based on depth, 

latitude, and historical fishing pattern.  The offshore surveys were designed to sample 

groundfish and have used a Yankee bottom trawl.  Surveys were generally conducted in 

27 – 366 meters of water, with an occasional deeper tow in the canyons of the continental 

shelf.  Although slightly different configurations have been used over the years, the gear 

has generally been rigged with 41 cm rollers and a 1.25 cm (stretched mesh) cod end and 

has been towed at 6.5 km/h (3.7 kts) for 30 minutes at each station.  Comparison trawls 

and conversion factors have been generated and the data provided to us for this study was 

previously standardized.  The spring and fall surveys are the primary indices used by the 

Northeast Fisheries Management Council (NFMC) and NMFS for the assessment of the 

Northwest Atlantic skate complex.  Between 1963 and 2005, between 167 and 374 

survey tows were conducted annually in this region (Figure 1).  At each station the 

number and weight of each species is recorded in addition to the total length of each 

individual (Figure 2). 

Data from the winter survey, which overlaps the southern regions of the fall and 

spring surveys, is also used in monitoring the population of the NW Atlantic skate 

complex including the barndoor skate.  This survey began in 1992 and provides a shorter 
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time series than the fall and spring.  In addition, the gear for the winter survey has been 

rigged specifically to target small flatfish, with rollers (used in the spring and fall 

surveys) replaced with a chain sweep covered by rubber disks and the addition of 30 

fathom ground cables.   

 

Life History Parameters 

Life history information from Gedamke et al. (2005) was used as a primary source 

to determine the parameters required for our analysis.   The von Bertalanffy growth 

parameters from this study were: a maximum length (L∞) of 166.3 cm, a growth 

coefficient (k) of 0.1414 yr-1, and an intercept (t0) of -0.129 yr.  The oldest animal 

observed in the Gedamke et al. (2005) study was 11 years old.  However, for this study, a 

maximum age of 20 years was used as recent vertebral analysis has found individuals as 

old as 15 years (Gedamke unpublished observations.).   

An estimate of fecundity was calculated using Holden’s (1973) relationship of 

birth weight to maximum fecundity of: 

 

fmax   =  10.9 * (weight in kg) -0.45       (1) 

 

The smallest individual captured by Gedamke et al. (2005) was 20 cm in length and 

weighed 28.5 g resulting in a maximum fecundity estimate of 54 young per year.   

Estimates of natural mortality (M) were calculated using six different methods:  

Hoenig (1983), Pauly (1980), Jensen (1996) age at maturity and k method, Peterson and 

Wrobleski (1984), and Chen and Watanabe (1989).  Estimates ranged from 0.16 from the 
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Chen and Watanabe (1989) estimator to highs of 0.21 and 0.25 from the two Jensen 

methods (1996).  Based on the low estimates of total mortality reported by Gedamke 

(2006) and the similar estimates for adult mortality of three of the estimators (Pauly 

1980; Peterson and Wrobleski 1984; Chen and Watanabe 1989) we use an estimate of 

0.18 for natural mortality.  Note that an estimate of water temperature is required for the 

Pauly (1980) estimator and we used 8.5 C as reported by Myers et al. (1997).   

Life history data from Gedamke et al. (2005) was used to calculate the number of 

recruits and the number of spawners caught per tow for each year and for each survey.  A 

cumulative plot of all individuals captured during the entire time series demonstrates that 

barndoor skates become fully vulnerable to the gear at approximately 55 cm.  A length 

age conversion was applied and an age at full recruitment to the gear was estimated at 2 

years old, corresponding to a size of 54 to 69 cm. Thus, animals captured in this size 

range were counted as recruits and standardized for each survey by the number caught 

per tow.  A female size at maturity of 116 cm was used as a minimum size cutoff to 

estimate the spawner abundance index, also standardized as number per tow (Gedamke et 

al. 2005).   

 

 

Model Development 

Stock Recruit Analysis 

The relationship between the number of recruits and the number of adults (i.e. 

stock-recruit relationship) is commonly described by one of the two following models:   
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SR S exp βα − ⋅= ⋅ ⋅      Ricker     (2) 

SR S1 K( ( ))
α ⋅

=
+

      Beverton and Holt   (3) 

 

where R is recruitment and S is spawner abundance  (Ricker, 1954; Beverton and Holt, 

1957).  The parameter α has units of recruitment per spawner and is an estimate of the 

slope of the function at the origin (when S = 0).  The parameters K and β  are density-

dependent terms which incorporate density-dependant compensation at low population 

sizes in the form of increased survival.  The product of β *S can be interpreted as the 

density dependent mortality while the K parameter of the Beverton-Holt model can be 

thought of as a threshold which, when exceeded, begins to reduce the rate of recruit 

survival to an asymptotic value.  The Ricker model, on the other hand, allows for 

overcompensation in which recruit survival does not simply asymptote but begins to 

decline at very high spawner abundances.  Overcompensation can result at these high 

spawner abundances as the availability of resources in the environment (i.e. food and/or 

space) is exceeded.  This conceptually provides a mechanism for a population to hover at 

or near a carrying capacity (K).   

The relationship between spawners and recruits must take into account the lag 

period between the spawner abundance recorded in one year and the time it takes for the 

resulting recruits to appear in the survey. In the case of the barndoor skate, egg cases are 

believed to have an incubation period of close to one year.  This coupled with the 2 years 

it takes for recruits to become fully vulnerable to the gear results in a 3 year lag period 

(e.g. spawners in 1995 give rise to recruits in 1998). Data were paired with this three year 
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lag period and fit to both the Ricker and Beverton-Holt models.  The slope at the origin 

was estimated for each model.   

To understand and work with the slope at origin parameter (α) it must be 

standardized to units common to population dynamics and can be expressed as the 

maximum reproductive rate.  The maximum annual reproductive rate is a critical 

parameter in population dynamics and can be used to estimate the maximum population 

growth rate (rintrinsic) and to estimate the limits of overfishing (Mace 1994; Myers et al. 

1997; Myers and Mertz 1998).  The explanation and calculations closely follow that of 

Myers et al. (1997, 1999).  The first step in standardizing the slope at origin begins with 

including the mortality of a recruit in reaching maturity as: 

 

F 0ˆ SPRα α == ⋅        (4) 

 

where SPRF=0 is the number of spawners resulting from each recruit.  The result, α̂ , 

represents the number of recruits per recruit (or alternatively, spawners per spawner) at 

very low population sizes (or at very low spawner abundances).  This quantity can also be 

thought of as the maximum lifetime production of spawners per spawner.  Note that this 

standardization (inclusion of SPRF=0) of the slope at the origin includes a lag period for 

recruits to reach the age at maturity (Amat).  For our application to the barndoor skate, 

Amat is 6.5 yrs, but the resulting lag period (Alag) is 4.5 yrs because our recruit index is 

animals 2 yrs of age. 

To take this approach one step farther, we then calculate the number of spawners 

produced by each spawner per year.  If adult survival is ps then the maximum annual 

reproductive rate (α% ) results from: 
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sˆ (1 p )α α= ⋅ −% .     (5) 

 

The maximum annual reproductive rate can then be used to approximate the maximum 

population growth rate (rintrinsic) as: 

 

( )int rinsic lagint rinsic lag r A 1 Mr Aexp exp 0α⋅ − −⋅ − %− =    (6) 

 

This equation can be solved iteratively for rintrinsic given an estimate of M, α% , and Alag.   

Although this methodology is commonly applied to biomass estimates (e.g. SSB), 

McAllister et al. (2001) showed that identical results are produced using either biomass 

or numbers.  

 
Demographic Model - Leslie Matrix Analysis 

An alternate approach to estimating the maximum population growth rate is the 

use of demographic models.  Demographic analysis simply tracks the change over time in 

number of animals at different ages or stages given a schedule of age (or stage) specific 

reproductive output and mortality (Caswell 2001).  The female population at time t + 1 is 

given by  

 

+ =1tN A tN      (7) 

where A is a female-only population projection matrix (i.e. Leslie matrix) containing a 

schedule of reproduction and mortality ( i.e. fecundity, survival, fishing mortality, age at 
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maturity) 

The predicted rate of population increase (rpredicted) is defined here to be the 

instantaneous rate of growth of the population given the parameters used in the projection 

matrix and a stable age distribution.  It is directly related to the largest eigenvalue (λ) of 

the matrix A as rpredicted = loge(λ) (Vaughan and Saila 1976; Caswell 2001).   Vaughan 

(1977) derived a computational method to calculate rpredicted which is often used in 

practice.  

 The rpredicted, or instantaneous growth rate, calculated from these models is density 

independent and, as such, only represents a snapshot of population growth based on a 

fixed set of life history parameters and a given schedule of fishing pressure.  To estimate 

the maximum population growth rate, the model must be constructed using parameters 

from a depleted population (Gedamke 2006).  Only in the case of a depleted population 

will competition for resources (i.e. food, space) be at a minimum and the effects of 

density dependant compensation result in a maximal survival rate and therefore maximal 

population growth rate.  The difficulty in this approach arises from the lack of the 

required estimates for life history parameters of species in depleted conditions.   

In a recent study, Gedamke et al. (2006) reviewed the basic logic behind the 

construction of a demographic model and provided suggestions as to how to incorporate 

the logic of density dependant compensation into the density-independent framework of a 

Leslie matrix demographic model.  Our explanation of our methodology closely follows 

that of Gedamke et al. (2006) and uses the following definitions of instantaneous 

population growth rate described in that paper:  

 
rintrinsic = maximum population growth rate (can only occur in the absence of fishing, at 
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the lowest population size, when density-dependent compensation is at a 

maximum); a stable age distribution is assumed 

rconditional = rate of population growth when there is no fishing mortality, given a 

schedule of survival and reproduction (conditional on population size and 

resulting density-dependent compensation) and given a stable age distribution 

rpredicted = predicted rate of population growth when all other parameters are known 

(assuming a stable age distribution and a given population size); rpredicted 

equals rconditional minus effects of any fishing mortality 

robserved = observed rate of population growth (assuming no measurement error;  no 

assumption of stable age distribution is made) 

 Our analysis consists of four primary steps:  1) estimating robserved from survey 

data 2) constructing a Leslie matrix and solving for the first year survival (S0) that results 

in  robserved = rpredicted  3) removing F from the model to estimate potential rate of 

population growth at specified population size (rconditional)  4) extrapolating rconditional to 

zero population size to estimate rintrinsic. 

We start our analysis by obtaining an estimate of robserved from the NEFMC fall 

survey data.  A basic log transformation of the survey indices (numbers caught per tow) 

provides an observed rate of population growth.  Estimates were made from different 

segments of the time series where population growth (or decline) appeared to be constant.   

We then constructed a Leslie matrix that solves for the first year survival so that the 

model predicts a rate of population growth that matches what we estimated from the 

survey data (robserved = rpredicted ).  There are a couple of important points to note about this 

step of the analysis.  First, the predicted rate of population growth, rpredicted will only equal 

 219



the observed rate of population growth, robserved, when a stable age distribution is present 

in the population and all other parameters are known.    

Unfortunately estimates of juvenile or first year survival are rare and unavailable 

for the barndoor skate.  Thus, we use estimates of total mortality from Gedamke (2006), 

our observed rate of population growth, and Vaughan’s (1977) method to solve for S0.  

This is a critical step as many life history parameters in elasmobranchs are believed to be 

relatively fixed (i.e. fecundity and adult survival, age-at-maturity), but the survival of the 

smallest animals is likely to be strongly tied to the population size and a key mechanism 

in the process of density dependent compensation.  Throughout the rest of this 

manuscript, as in Gedamke (2006), we will assume that the effects of density dependent 

compensation are realized in the pliability of first year survival (S0) alone.  If other 

information is available, this can be easily incorporated into the model. 

This approach provides an estimate of S0 that is specific to the conditions being 

modeled and dependant on the estimated fishing mortality and the observed rate of 

population growth.  Now, by removing fishing pressure from the model, we obtain an 

estimate of how fast the population could grow, given the same life history parameters, 

under the condition of no fishing pressure (i.e. rconditional).  For our application to the 

barndoor skate no selectivity curve is available but, based on an analysis of the length-

frequencies of survey catches, we know that animals are fully recruited to the gear at age 

2.  We assume that some fishing pressure is occurring on younger animals and apply 50% 

of F to age one animals.  A sensitivity analysis with varying age of recruitment was also 

conducted to see how robust our results were to this assumption.   

The next step is to use the estimates of rconditional to estimate rintrinsic.  To get an 
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estimate of rintrinsic we must first recognize that the instantaneous potential population 

growth rate, rconditional, depends on the size of the population. This is a property of all 

population models with density-dependence.  According to the logistic model, population 

growth rate is related to the intrinsic rate of increase in the absence of fishing by the 

linear relationship (Figure 3): 

 

conditional intrinsicr  = r  (1- N K )     (8) 

 

When fishing occurs on all ages at an instantaneous rate F (per year), 

 

    =  predicted conditional intrinsicr  = r - F r  (1- N K ) - F .  (9)   

 

with N as the size of the population being modeled and K as the virgin population size 

(i.e. carrying capacity).  Note that this model implicitly states that the instantaneous rate 

of growth will be equal to zero when N = K and F = 0.  Rearranging the equation and 

presenting it in terms of survey indices we can solve for the intercept (rintrinsic) as: 

 

conditional K conditional
intrinsic

K

K

r rr
-1-

I
I I I
I

= =     (10) 

 

with I representing the survey index at the time we measured robserved , and IK representing 

the index value of a virgin population.  We use the highest value of the survey index to 

represent IK.   
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Results 

Stock Recruit Analysis 

A compelling stock recruit relationship was clearly present in the fall survey data and 

less so in both the winter and spring surveys (Figures 3-5).  Catch rates for both adults 

and recruits in the spring survey were considerably lower than for both the winter and 

fall.  The adult catch rates for both the fall and winter were comparable, however the 

winter catch rates of recruits were approximately double that of the fall.   

 Estimates of the slope at the origin were the most precise from the fall survey data 

and were 3.97 RS-1 from the Ricker model and 4.40 RS-1 from the Beverton-Holt model 

(Table 1).  Results from the winter and spring had a much wider range (3.95 to 27.56 RS-

1) and much greater standard errors.  In the spring survey was there also a discernable 

pattern to the residuals for both the Ricker and Beverton-Holt models, due primarily to a 

number of years in which no spawners were recorded.   

The resulting estimates of the maximum annual reproductive rate (α% ) were from 

1.76 and 1.96 from the fall data and from 1.76 to 12.26 from the winter and spring data.  

Estimates of rintrinsic, transformed from the fall α% , were 0.33 from the Ricker model and 

0.35 from the Beverton-Holt model.  Estimates of rintrinsic from the spring and winter 

surveys ranged from 0.33 to 0.68.   

 

Demographic Model - Leslie Matrix Analysis 

The barndoor skate population was observed (robserved) to be declining at an 

instantaneous rate of -0.32 between 1963 and 1979 and recovering at a rate of 0.36 

between 1996 and 2005 (Figure 7).  Total mortality for the same time periods was 
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estimated from mean lengths and catch rates by Gedamke (2006) to be 0.89 and 1.04 for 

the decline (63-79) and 0.04 to 0.23 for recovery (96-05).  Using a natural mortality of 

0.18, F was thus, estimated to be 0.71 and 0.86 for the decline and 0.05 for the recovery.  

An F of 0.1 was also included as a sensitivity test in our analysis for the recovery. A 

Leslie matrix was constructed with these parameters and solved for the S0 that would 

result in the robserved from the survey data given the two different estimates of F for each 

time period.  Our base model, which assumes 50% selectivity at age 1 and 100% by age 

2, resulted in a S0 that were 0.19 and 0.45 for the decline and 0.56 and 0.76 for the 

recovery.  With fishing pressure removed from these models, and keeping S0 constant, 

rconditional was estimated to be 0.26 and 0.37 from the decline and 0.40 and 0.44 from the 

recovery.  As a check on the realism of these estimates we set S0 at a theoretical 

maximum (equal to adult survival; 0.84) and estimated an upper bound for the 

instantaneous rate of growth of 0.45. 

Estimates of rconditional were sensitive to the age-at-entry to the fishery only when 

modeling the decline.  In this case the calculated rconditional’s declined significantly as age-

at-entry increased, while estimates from the recovery were robust to this aspect of our 

model (Figure 8).    

For the majority of both the decline and recovery time segments we analyzed, the 

barndoor skate population was clearly depleted and our estimated rconditional should 

approximate rintrinsic.   Using equation 10, or alternatively plotting our estimates of 

rconditional versus the corresponding survey index provides an estimate of rintrinsic.  For both 

the recovery and the decline, the time segments being analyzed covered similar stock 

sizes (i.e. survey indices) with the decline containing the highest values.  In 2000, 
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halfway through the modeled recovery, survey indices were 0.08 fish per tow, 

approximately 10% of the high of 0.8 fish/tow recorded in 1963.  For the decline the 

range of indices were similar to that of the recovery but showed very little absolute 

changes in value after 5 years (1968).  Thus, we made a conservative approximation with 

a survey index of 0.1 from the 1967-1969 data.  Solving for the intercept, we obtain 

estimates of 0.29 and 0.42 from the decline and 0.44 and 0.49 from the recovery (Figure 

9).   

There are two points to note:  First, the estimate of 0.49 that resulted from the 

recovery model with an F of 0.1 would require first year survival to be greater than that 

of an adult and is therefore an infeasible estimate.     Secondly, if the index in 1963 

represents the situation with some fishing, then the rightmost point in Figure 9 should be 

farther to the right, thus lowering the y-intercept.  Because our extrapolation is over such 

a short range of survey indices, the uncertainty in the virgin stock size affects the 

estimated rintrinsic only slightly.   

 

 

Discussion 

The results of our study suggest that the barndoor skate population in the US 

waters of the North Atlantic is able to grow at a rate that is higher than previously 

believed and higher than for most other studied elasmobranchs (Casey and Myers 1998; 

Frisk et al. 2002; Cortes 2004).  The population, over the past 10 years, has been 

observed growing at a rate of approximately 0.36.  The results of our demographic 

model, which are dependent on this growth rate, suggest there is still some scope for 
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compensation and rates of up to 0.45 are possible.  Our analysis of the stock-recruit 

model shows a compelling relationship and that the rate of recruitment is closely tied to 

the spawner abundance.  Estimates of rintrinsic from this approach suggest that the barndoor 

skate population has recently been growing at or near an estimated maximum growth rate 

of 0.35. 

Previously published values for any life history or population dynamic parameters 

of the barndoor skate have been equivocal, making a comparison of our results to earlier 

findings difficult. Prior to our work, only two studies have attempted to estimate the 

maximum population growth rate of the species.  Having no direct information available, 

researchers were forced to make numerous assumptions about the basic life history 

information of the species.  Casey and Myers (1998) suggested that the barndoor may be 

similar to the European common skate (D. batis) and utilized the life history parameters 

of this species [age at maturity (Amat)=11 yrs, and fecundity (F)=47 eggs] to make some 

broad conclusions based on a life table analysis.   Casey and Myers (1998) suggested that 

an instantaneous mortality (Z) of 0.4 would drive the species to extinction on Georges 

Bank and that the colder waters and resulting later maturation in parts of the species 

northern range would make the species vulnerable to extinction at half that level (Z = 

0.2).  Although few details are given regarding the specifics of their analysis, they 

conclude that if the mortality of juveniles is twice that of an adult, the theoretical 

maximum total mortality the species could withstand is 0.45.   

Frisk et al. (2002) reported that a fishing mortality of 0.20 would result in a 

negative population growth and is therefore unsustainable.  In their study, they developed 

a stage based model for the barndoor skate and compared their results to age-based 
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models for the little skate Leucoraja erinacea and the winter skate Leucoraja ocellata.  

As in the Casey and Myers (1998) study, they were faced with a paucity of data and used 

parameters from the common skate (D. batis) for fecundity (47) and a maximum age of 

50 years which they translated to a natural mortality estimate of 0.09 by the Hoenig 

(1983) method.   Empirical relationships from Frisk et al. (2001) provided estimates for 

the age-at-maturity ranging from 9 to 16 years and they chose an intermediate value of 12 

years.  Although the Frisk et al. (2002) study used a stage based model, Mollet and 

Cailliet (2002) found that the results of similar age-based models provide almost identical 

results and should therefore be comparable to our study.   

 The results of our work compare most favorably with the approximate upper 

limits of total mortality presented in the Casey and Myers (1998) study.  They report that 

a total mortality of 0.45 will drive the species to extinction when juvenile mortality is 

twice that of adults, however, they also report an upper limit of 0.4 when adult and 

juvenile survival is equal.  This is clearly infeasible but with no further information on 

the details of their model the cause remains unknown.  Regardless of this slight 

discrepancy, the results of our demographic model also suggest that 0.45 is a reasonable 

upper limit to the maximum population growth rate and therefore a reasonable 

approximation of the upper limit to the maximum sustainable total mortality.  The results 

of the Frisk et al. (2002) model suggest lower growth rates and therefore a much greater 

sensitivity to fishing pressure. 

It is difficult to directly compare the results of these three demographic studies, 

however.  Our work is the only one to have empirical estimates for many of the life 

history parameters, yet we were also forced to make assumptions and decisions for 
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parameters that needed to be estimated (i.e. natural mortality, fecundity).  Also, unlike the 

other two studies, our approach also incorporates the logic of density dependent 

compensation into the analysis and uses observed growth rates to estimate the survival of 

the youngest animals.  As such, our results are directly tied to the observed growth rates 

estimated from the NEFSC survey data.  Although the contrast present in the survey data 

is generally a very desirable property, our estimates of robserved were made over relatively 

long time periods and a wide range of stock sizes.  This approach provided population 

growth rates that were less variable than if smaller time segments were used.  The trade-

off in this decision is was a potential bias that could result from smoothing over larger 

time periods and also determining the appropriate stock size that corresponds to our 

estimated rate of growth.      

 Despite these concerns the assumptions, logic and details of our approach are 

clear and, like any demographic analysis, the interpretation of the absolute results must 

take these factors into consideration.  For example, the results of our analysis from the 

recovery phase should be considered more reliable than those from the decline due to the 

assumptions we were forced to make about age-at-entry to the fishery.  Matrix models are 

known to be particularly sensitive to the pattern of exploitation and this was exhibited in 

our results (Figure 8; Caswell 2001).  In our decline analysis, high estimates of fishing 

mortality resulted in variable results depending on our assumption of when animals were 

recruited to the gear.  The affect of this assumption on the results was insignificant when 

we include the low levels of fishing mortality in the recovery. 

 In our study we also have the luxury of comparing the results of our demographic 

analysis to those of an independent approach, our stock-recruit analysis.  For most stocks 
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the relationship between recruits and spawners is highly variable and not easily defined 

(Cushing 1995; Myers and Barrowman 1996).  Although one would expect the 

reproductive strategy of an elasmobranch to result in a clear relationship, data is generally 

unavailable.  Recently, a number of elasmobranch stock assessments have attempted to 

estimate the related Beverton-Holt steepness parameter from age structured models 

(Apostolaki et al. 2002; Brooks et al. 2002).  However, as far as we are aware, the only 

other empirically derived stock recruit relationship that has been demonstrated for an 

elasmobranch is for spiny dogfish, Squalus acanthias (Rago, pers. comm.).  Our results, 

compared to the analysis of over 700 spawner-recruit relationships conducted by Myers 

et al. (1999), suggest the barndoor skate has a relatively low maximum annual 

reproductive rate.  For a majority of the species in their study the maximum annual 

reproductive rate ranged from 1 to 7.  Our results put the barndoor skate at the low end of 

this spectrum with an estimated maximum annual reproductive rate of 1.76 to 2.21.  This 

is reassuring considering the reproductive strategy of the species.   

It is interesting to note that the strong stock-recruit relationship we observed in 

the fall survey was due, in part, to the two estimates at the highest spawner abundances.  

These represent both the first and last pairing of data available from the fall survey when 

abundance has been highest.  Over the next few years it will be enlightening to watch 

both the overall trends in survey abundance but also the pattern of recruitment that results 

from the highest abundances on record.  In addition, as more years of data from the 

winter survey become available, the variability in parameter estimates should also be 

reduced providing another stock recruit relationship to compare to that which was 

generated from the fall. 
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Survey 
(n) 

Stock-Recruit 
Model α  Standard 

Error 
α  

LCLM 

α  

UCLM 
K / β  α̂  α%  Ln (α% ) rintrinsic

Fall (26) Beverton-Holt 4.40 1.05 2.27 6.54 0.05 11.89 1.96 0.67 0.35

Fall (26) Ricker 3.97 0.77 2.42 5.52 11.49 10.71 1.76 0.57 0.33

Spring (18) Beverton-Holt 4.97 7.06 -9.40 19.34 0.01 13.42 2.21 0.79 0.37

Spring (18) Ricker 3.95 2.46 -1.06 8.97 45.43 10.68 1.76 0.56 0.33

Winter (11) Beverton-Holt 27.56 25.16 -29.37 84.48 0.01 74.42 12.26 2.51 0.68 

Winter (11) Ricker 12.63 5.77 -0.41 25.68 18.73 34.12 5.62 1.73 0.53 

 
 

Table 1.  Results of the stock-recruit analysis for the barndoor skate on Georges Bank and the 

Gulf of Maine.  The survey and model are indicated with n representing the number of 

years in which at least one skate was caught. α  is the slope at the origin parameter 

with associated standard errors and 95% confidence intervals (UCLM, LCLM).  K is 

the carrying capacity parameter from the Beverton-Holt model and β  is the density 

dependant parameter from the Ricker model.  α̂ is the lifetime production of spawners 

per spawner and  α%  is the maximum annual reproductive rate (i.e. number of 

spawners produced by each spawner per year.  The maximum population growth rate 

is rintrinsic.  Note that results from the winter survey are the least credible because of low 

sample sizes and high standard error (indicated by underlined italic typeface).  The 

most credible estimates for the maximum population growth rate are from the fall and 

spring, indicated by underlined bold typeface.   
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Figure 1. All survey stations sampled (n = 8,424) by the National NMFS annual fall 

groundfish survey from 1963-2005.   
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Figure 2.  Number of barndoor skates caught per tow for each of the seasonal NMFS 

groundfish surveys.  
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Figure 3.  Stock-recruit relationship from the fall NMFS groundfish survey from 1963 to 

2005 (n = 26; years in which at least one skate was caught).  The year in which 

recruits were measured is indicated. 
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Figure 4.  Stock-recruit relationship from the spring NMFS groundfish survey from 1968 

to 2005 (n = 18; years in which at least one skate was caught).  The year in 

which recruits were measured is indicated. 
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Figure 5.  Stock-recruit relationship from the winter NMFS groundfish survey from 1992 

to 2005 (n = 11; years in which at least one skate was caught).  The year in 

which recruits were measured is indicated. 
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Figure 6.  Stock-recruit relationship, as described by the Beverton-Holt and Ricker 

models,  from all three seasonal NMFS groundfish surveys.  The top figure is 

over the entire range of observed spawner abundances and the bottom figure is 

focused on the lowest abundances to provide detail for the slope at the origin.  
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Figure 7.  Survey indices from the fall NMFS groundfish survey on Georges Bank and 

the Gulf of Maine.  Data has been log transformed to estimate the rate of 

population change.  Resulting estimates for the observed rate of population 

change from 1963-1979 (decline) and for 1996-2005 (recovery) is indicated by 

the slope parameter (bold face type) in the linear equations.   
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Figure 8.  Estimates of rconditional from a of Leslie matrix demographic analysis for the 

barndoor skate.  Estimates from the decline and recovery are indicated as is the 

sensitivity of rconditional estimates to assumptions of age at entry and assumed 

fishing pressure for each scenario (indicated by the number next to each data 

point).  The most believable scenario is indicated by the shaded region. The 

solid line represents the observed rate of population growth between 1996 and 

2005 and the dashed line represents rconditional when first year survival is equal 

to adult.   Note that two data points for the high F (0.86) decline analysis (age 

at entry of 0 and 0.5) are not plotted as they would have required a first year 

survival greater than adult.   
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Figure 9.  Extrapolation of calculated rconditional’s to a zero population size to estimate 

rintrinsic.   Estimates from the most believable age at entry scenario (shaded 

region in Figure 8) were used and rintrinsic was estimated as the y-intercept from 

each relationship.  The rightmost point represents the highest value recorded in 

the fall survey and assumed to represent virgin conditions where a long term 

growth rate of 0 would be realized.  Note that if this assumption was incorrect, 

and the actual survey index should be higher (the 0.8 point shifted to the right), 

the extrapolation is over such short distances that estimates of rintrinsic would not 

be drastically altered.   
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Chapter 9 

 

Conclusions and Future Work 
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Although our work has shed light on a number of different aspects of both the 

United States barndoor skate population and the methodologies used to assess marine 

species, there are two broad conclusions that can be drawn from this work.  First, we 

have shown that although data were extremely limited, a lot of information can be 

gleaned from a careful analysis of the available data.  Our field work provided many of 

the necessary life history parameters while our methodological developments provided 

the tools to extract information from the small sample sizes in the NMFS surveys.  

Secondly, the barndoor skate population not only appears to be in a solid recovery phase 

and in no current threat, but it also appears to be much more resilient to fishing pressure 

than previously believed.     

The results and methods presented in this dissertation should, by no means, be 

thought of as a final step in the process.  There is still work to be done.  Our life history 

studies have provided the necessary basic parameters but there are a couple of aspects 

which still need to be considered. First, our vertebral analysis assumed that rings were 

formed annually and a formal verification process (i.e. marginal increment analysis) has 

not been completed.  Annual ring formation has been shown in a number of other similar 

skate species and there is no reason to believe that the barndoor skate should be any 

different.  To be thorough, however, we have obtained samples from NMFS from the 

winter months and this verification is forthcoming.   

The other aspect of the life history for which no empirical data exists is fecundity.  

The Holden (1973) relationship was used out of necessity and like any other relationship 

that spans such a wide range of species, there is considerable uncertainty in these 

estimates.  The reproductive tracts from our study have been preserved and a further 

 243



analysis, such as ovarian egg counts, may shed some light on this aspect of the barndoor 

skate reproduction.  Another potential source of information may come from the 

Montreal Aquarium where they began successfully reproducing barndoor skates a couple 

years ago.  We have been in contact with the curator and hope to gain further insights 

from the species reproductive behavior in captivity.   

In our food habits study, we showed a clear pattern in differential niche utilization 

between mature male and mature female barndoor skates.  Although the correlation 

between the sex-specific dentition is strong the cause of this shift in food habits remains 

unknown.  Since the different food will surely contain different nutritional values, the 

possibility of exploring the energetics of mature barndoor skates may shed some light on 

the driving force of the observed sex-specific feeding habits.  Further work should also be 

done on the specifics of the tooth morphology included the possibility of season changes 

in dentition and the exact timing of the expression of this secondary sexual characteristic 

in males.   

 Although the methods we developed were designed to avoid assumption 

violations in commonly used approaches, every method, including ours, have 

assumptions which must continue to be taken into consideration.   For example, the 

transitional form of the mean length statistic developed in chapter 4 worked well with 

Goosefish but the application to the barndoor skate required a different approach which 

took into account the reproductive strategy of the species and a strong stock-recruit 

relationship.     The application of any of these models must take into account the 

biological realism of the required assumptions.  Another example is in our demographic 

analysis. Our estimates of observed population growth were done over a large range of 
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stock sizes and we assumed that growth was constant over those time periods due to no 

discernable pattern in the residuals.  One of the premises of this work, however is that 

density dependant compensation plays a role in the differential survival of juveniles.  

Therefore, although it wasn’t obvious in our data, one would expect changes in survival 

to be occurring within these ranges even if fishing pressure has remained relatively 

constant.  Future work to address this issue and to further advance the methodology is 

planned.  A time series fitting approach (i.e. Pella and Tomlinson, 1969) would allow the 

incorporation of data from each year and should result in more stable results.   

On a final note, our work is not the only research which has suggested that the 

barndoor skate population may not have been in as much danger as proposed by Casey 

and Myers (1998).  As mentioned in the life history section, analysis of Canadian survey 

and commercial fisheries data suggests that the overall distribution of the species is far 

more extensive than originally thought both in terms of depth and northern range (Kulka 

et al., MS 2002; Simon et al., MS 2002).  Barndoor skates were found as far north as the 

Labrador Shelf to 620 N and into depths of about 1600 meters with significantly higher 

catch rates at depths below 450 meters (Kulka et al., 2002; Simon et al., MS 2002). These 

studies strongly indicate that Casey and Myers (1998) used a data set that poorly sampled 

barndoor skate overall distribution and as such substantially underestimated the actual 

barndoor skate population.  It is important to note, however that although the US 

population now appear to be healthy and there are deep water populations in Canada, 

only a careful spatial analysis of historical data will allow conclusions to be drawn on 

range reductions and/or localized extirpations that may have occurred.   
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