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ABSTRACT 

The index-removal method estimates abundance, exploitation and catchability 
coefficient, given surveys conducted before and after a known removal.  The method 
assumes a closed population between surveys.  Index-removal has seldom been applied 
due to its strong assumption of constant survey catchabilities.  This work generalizes the 
method to allow multiple years of data to be incorporated, and the assumptions of the 
original model to be relaxed.   

If catchability is constant across years, precision can be improved by analyzing 
multi-year data simultaneously.  Two multiple-year models were developed: the first, 
1qIR, assumes constant catchability within and among years; the second, 2qIR, allows 
catchability to change between surveys within years, but assumes survey-specific 
catchability constant across years.  The new models were tested by Monte Carlo 
simulation then applied to data from two southern rock lobster (Jasus edwardsii) 
populations.  Infeasible exploitation estimates (>1.0) occurred with the original and 1qIR 
models, but all 2qIR model estimates appeared reasonable.  The 2qIR model predicted 
lower exploitation rates than did the other models, but estimates from the original model 
demonstrated a different pattern and did not appear to be related to those of either 
multiple-year model.  In one application, a likelihood ratio test found that 1qIR was the 
most parsimonious model; but diagnostic plots suggested 2qIR provided better estimates 
than the 1qIR model.  

Size- and sex-specific heterogeneity of catchability introduces bias in model 
estimates.  Field experiments were performed to test whether the catchability of small 
lobster was constant for southern rock lobster during two seasons when fishing occurs.  
No evidence of heterogeneous catchability was observed during the spring.  However, 
significantly more small lobster were caught in control traps and traps seeded with one 
large adult male lobster than were caught in traps seeded with one large adult female 
during the summer, when females are preparing to molt and reproduce in Tasmania. 
Because heterogeneous catchability occurred during the summer, but not the spring, an 
index of recruitment based on the catch of lobsters one molt size below legal size might 
be developed for the spring, however, more sampling is needed to resolve the annual 
timing of sex- and size-specific catchability changes.     
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GENERAL INTRODUCTION 

 

 Crustacean populations form some of the most valuable fisheries in the world, but 

they are also some of the most difficult to assess.  Assessment is made difficult because 

crustaceans do not retain hard body parts that accumulate measurable growth increments 

like most vertebrates do; and so far, a practical method for aging crabs or lobsters has not 

been developed.  Size-structured analyses of many important crustacean fisheries are 

difficult as well, because these animals often exhibit indeterminate growth, and cohort 

identification is usually only practical at early ages (Hancock 1980).  Consequently, the 

main focus of this dissertation is to solve problems of abundance and exploitation rate 

estimation for crustacean fisheries.   

Central to abundance estimation problems, is an understanding of catchability.   

The catchability coefficient, q, is the fraction of the population caught with one unit of 

randomly placed fishing effort, f: 

     qfNC =      (1) 

where C is the catch, and N is the abundance of the population, provided the fraction 

caught is small (Chen et al. 1998).  The expression for the catchability coefficient 

followed here was provided by Chen et al.(1998): 

     A
aq

φ
ρφ

=      (2) 



4 
 
 

where: ρ is the proportion of animals that encounter the gear that are retained by the gear 

(gear efficiency), φ is the average density of animals (per unit area), a is the area fished 

by the gear (with one unit of effort), and A is the area inhabited by the population.  The 

catchability coefficient is population specific because it is based on the area inhabited by 

the population.  It is gear specific because it includes efficiency of the gear and the area 

fished by the gear.  Paloheimo and Dickie (1964) described the historical development of 

the catchability coefficient, and Arreguin-Sanchez (1996) summarized many of the 

variations in its interpretation over its history.   

Heterogeneity in the catchability coefficient among samples presents a problem 

for abundance estimation that can be hard to overcome.  The catchability coefficient is 

sometimes treated as a nuisance parameter, it is sometimes assumed constant (as 

discussed in Chapter 2), or at other times estimated together with additional parameters, 

as in the catch-survey analysis model (Mesnil 2003).  However, changes in the 

catchability coefficient have long been recognized as a potential problem for abundance 

estimation when using commercial catch per unit effort (CPUE) data (DeLury 1947; 

Gulland 1964; Paloheimo and Dickie 1964).  Though there is less potential for 

catchability change among carefully-designed survey indices than in commercial CPUE, 

heterogeneity in survey catchability can still occur (Hilborn and Walters 1992; Ziegler et 

al. 2002).  Catchability change in surveys is often due to a behavioral change of the 

fished species.  The behavioral change may be caused by biological cycles of the animal, 

behavioral interactions with other animals, environmental (often temperature) change, or, 

a combination of these.  Well-designed surveys will attempt to avoid these potential 

problems, but some degree of catchability change between surveys may be unavoidable.       
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 This dissertation examines three different fishery situations where knowledge 

about catchability is critical for making accurate and precise estimates of abundance and 

exploitation rate.  First, an experiment is described which tests for seasonal size- and sex-

specific catchability change for small lobster (Jasus edwardsii) entering traps occupied 

by larger animals.  Second, a new abundance estimator (1qIR) is described, which can be 

used if the assumption of constant catchability can be made.  The 1qIR model is applied 

to data from a rock lobster fishery where catchability appears to be relatively constant.  

Third, another new IR model is introduced (2qIR), which accommodates data collected 

from fisheries that experience a catchability change over the fishing season.  The 2qIR 

model is then applied to another rock lobster fishery where catchability is thought to 

change during the fishing season (Ziegler et al. 2003). 

 

Testing for trap inhibition 

 Managers of the rock lobster fishery in Tasmania, Australia, have had difficulty in 

developing an index of recruitment based on the catch of animals (pre-recruits) that will 

recruit to the fishery within the next year (Frusher et al. 2003).  The fishery managers 

found that the catch of pre-recruit lobsters was not related to the abundance of new 

recruits the following year (Frusher et al. 2003).  Recent work has suggested, that small 

rock lobsters may be inhibited from entering traps that already contain large lobsters 

(Frusher and Hoenig 2001), so the experiment described herein was designed to 

determine if such inhibition occurs.  
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Abundance estimation by the index-removal method 

 The index-removal (IR) model is a simple abundance estimation model, which 

bases the parameter estimate on the change observed in the catch rate of a survey index 

after a relatively large removal takes place.  The removal is usually a harvest of the 

population.  The method was first introduced by Petrides (1949) to assess the population 

size of pheasants.  Other wildlife studies have applied the index-removal model to feral 

horse (Eberhardt 1982) and white-tailed deer (Roseberry and Woolfe 1991) populations.  

In fisheries, it has been applied to estimate abundance and exploitation rate for snow crab 

(Chionoecetes opilio) (Dawe et al. 1993; Chen et al. 1998), exploitation rate for southern 

rock lobster (Jasus edwardsii) (Frusher et al. 1998; Frusher 2001), and most recently, 

dredge efficiency for sea scallops (Placopecten magellanicus) (Gedamke et al. 2005).  

Use of the IR model has also been suggested for American shad spawning runs (Olney 

and Hoenig 2001).   

Though known for some time, the basic IR model (which makes estimates 

annually, hence, hereafter called the “annual model”) has received only moderate 

development (see Hoenig and Pollock (1998) for a detailed review).  Routledge (1989) 

generalized the method to include i removals and i+1 surveys.  Chen et al. (1998) pointed 

out that heterogeneity of capture probabilities among subclasses in the population can be 

accommodated for by making separate parameter estimates by subclass, provided that 

removals are known by subclass; and that precision of estimates could be improved by 

reoccupying the same sampling locations in the second survey.   

In Chapter 2, the annual model is generalized to incorporate multiple-years of 

data.  The goal of the multiple-year model (1qIR) is to improve the efficiency of the IR 
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model, and thereby improve the precision of the 1qIR model estimates compared to those 

of the annual model.  The 1qIR model is developed and applied, and its performance is 

tested by Monte Carlo simulation.    

Chapter 3 explores the 2qIR model, a further generalization of the IR method, 

which allows the assumption of constant catchability to be relaxed.  In many fisheries, the 

assumption of constant catchability over a fishing season is known to be violated 

(Paloheimo 1963; Morgan 1974; Ziegler et al. 2002).  The 2qIR model should be useful 

in many of these fisheries.  The 2qIR model is developed and applied in Chapter 3, and 

the performance of this new model is tested by simulation.      
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Chapter 1 

 

Do Large Rock Lobsters Inhibit Smaller Ones From Entering Traps? 

A Field Experiment 
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ABSTRACT 

 

Indices of recruitment are often derived from trap surveys.  If legal-sized lobsters 

inhibit smaller ones from entering traps, the overall catch rate may depend on population 

composition and not just overall abundance, and recruitment strength can be 

overestimated as average length decreases in a population.  A controlled field experiment 

was used to examine whether trapping inhibition of Jasus edwardsii occurred during 

spring (November) or summer (February) in southeastern Tasmania.  Four treatments 

were applied.  Baited traps were seeded with either: one large female lobster, one large 

male or two sublegal-sized females.  Baited traps with no seed were used as a control.  

Seeded traps always caught fewer sublegal-sized lobsters than control traps.  When 

catches in both seasons were examined by sex of entrants, seeded traps caught fewer 

small lobsters than control traps in 11 of 12 comparisons.  However, a strong inhibitory 

effect was observed only for female-seeded traps during summer.  Our data suggest 

sublegal-sized indices of recruitment are likely to be influenced in summer by the number 

of large females present.  Spring trials suggest corrections to a sublegal-catch index may 

be unnecessary then, but more work is needed to better understand the complex, sex-

specific and seasonal patterns of interactions in this species. 

 

Keywords:  southern rock lobster, trapability, selectivity, trapping behaviour, catchability. 

 

This chapter has been accepted for publication, and is currently in press.  The correct 

citation of that publication will be: 

Ihde, T.F., Frusher, S.D., and Hoenig, J.M., 2006. Do Large Rock Lobsters Inhibit 

Smaller Ones From Entering Traps?  –  A Field Experiment. Marine and 

Freshwater Research 57, 665-674. 
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INTRODUCTION 

 

Frusher and Hoenig (2001) reported strong negative correlations between catches 

of large and small southern rock lobster (Jasus edwardsii), and found that trap selectivity 

curves differed substantially among areas of Tasmania with differences in the relative 

abundance of large animals.  The catchability of small lobsters (both rock and clawed) 

appears to increase throughout the fishing season as the larger, more trappable animals 

are depleted (Smith 1944; Frusher and Hoenig 2001; Tremblay and Smith 2001).  If small 

lobsters are deterred from entering traps by the presence of larger animals, and surveys 

are conducted when large lobsters are present, 1) size compositions will be biased toward 

larger animals, and 2) underestimates of the abundance of smaller animals would 

underestimate the total population size; also, if large animals are depleted over time, 3) 

the resulting increase in catchability of small lobsters in surveys could deceptively appear 

as an increase in recruitment; alternatively, if recruitment appears constant over time 4) 

the perceived relative abundance of new recruits could mask a recruitment decline.  

Frusher et al. (2003) examined the implications of failing to account for temporally 

changing gear selectivity in the assessment of rock lobster, and found that the biases in 

parameter estimates could be substantial.   

Other studies of the same reserve population studied here suggest that the 

presence of large rock lobsters influences the catchability of smaller lobsters.  Frusher 

and Hoenig (2001) presented evidence that trap selectivity changed with the size 
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composition of a stock for Jasus edwardsii.  Ziegler et al. (2002) compared animals 

caught in traps with size distributions estimated by diver surveys.  They concluded that 

the catchability of J. edwardsii was size specific and varied by sex and season, and that 

strong behavioral interactions were likely between large and small lobsters.  In an in situ 

video observational study, Green (2002) reported that one of the primary reasons that 

smaller lobsters failed to enter traps was that larger lobsters inhibited entry.   

Numerous studies have concluded that small decapods may be underrepresented 

in trap catches, and large animals may deter smaller ones from entering traps (see Miller 

1990 for review).  However, trapping inhibition of small lobsters by large conspecifics 

has not yet been demonstrated experimentally in the field for rock lobster.   

 The experiments described here investigate whether small (sublegal) Jasus 

edwardsii are deterred from entering traps that already contain a large lobster, as the 

results of Frusher and Hoenig (2001) suggest, and whether the hypothesized inhibition 

varies with season and sex.   
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MATERIALS AND METHODS 

 

Field experiments were conducted at Crayfish Point Reserve, a small (1.0 km2) 

scientific reserve adjacent to the Tasmania Aquaculture and Fisheries Institute (TAFI) 

(42o57.2’ S 147o21.2’ E) near Hobart, Tasmania, Australia.  Catch rates were compared 

among traps that differed in the type of lobster placed in the traps (i.e., the “seed”) prior 

to setting the traps.  Baited traps were seeded with either: one large female lobster (120 - 

150 mm carapace length [CL]), one large male (160 - 180 mm CL), or two sexually-

mature, sublegal-sized females (90 - 104 mm CL) that were approximately equal in 

weight to a large female.  Baited traps with no seed were used as a control.  Different size 

ranges were defined for large female and large male seeds because sexual dimorphism is 

pronounced in the study region and females rarely reach the sizes attained by males 

(Ziegler et al. 2002).  Throughout the experiment, “small” or “sublegal” lobsters were 

defined to be those animals 1 - 15 mm below the legal size limit, where minimum legal 

sizes in the Tasmanian fishery are 105 and 110 mm CL for females and males, 

respectively.  We chose this size range for “small” animals because it includes the size 

range proposed as an index of future recruitment strength (Frusher 1997), and because 

animals in this size range are typically sexually mature (MacDiarmid 1989).  All 

experimental animals used as seeds were sexually mature and collected with baited traps.  

Traps used for this study were the same traps used to collect the data reported by Frusher 

and Hoenig (2001), and are similar in size (0.6 m x 0.6m x 0.5m – length-width-height; 
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40mm mesh size) and design to those used by the fishery, but without escape gaps which 

are designed to release undersized lobster (as described in Frusher et al. 1998).  On the 

morning of each trial, 50 traps were set in the reserve areas accessible to trapping and 

locations were recorded using a Garmin eTrex Legend® differential GPS.  An effort was 

made to use the same locations on each day.  Treatments were randomly assigned to new 

locations for every set.  All traps were placed a minimum of 10 m from adjacent traps.  

Previous work suggests that the limit of influence of a baited lobster trap may be as little 

as 9 m (Smith and Tremblay 2003), and as much as 120 m (Jernakoff and Phillips 1988).  

The 10 m minimum distance between traps was chosen to minimize the overlap of area 

fished between traps while allowing for an adequate sample size.  All traps were baited 

with a standard amount of fish consisting of one barracouta (Thyrsites atun) head and 

one-half mackerel (Trachurus declivis), which totaled approximately 1kg.  Bait for traps 

was the standard for TAFI’s seasonal scientific surveys.  The bait for each trap was 

placed in a “bait saver,” a pocket made of heavy plastic mesh, to prevent easy access to 

the bait and to prevent immediate consumption of the bait.  Traps were set for 

approximately 22 hours.   

Field trials were always performed on 3 consecutive nights.  Trials were 

performed twice in spring during nearly opposite moon phases: November 11 - 13, and 

November 25 - 27, 2003 (fraction of the moon illuminated ranged between 0.96 - 0.85, 

and 0.02 - 0.15 respectively; US Naval Observatory, personal communication).  Trials 

were then repeated in summer, February 25 - 27, 2004, to examine potential seasonal 

changes in catch rates.  Frusher and Hoenig (2001) found the strongest negative 
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correlations in survey catches between large females and small females, so catch rates 

were also examined by sex of the entrants.   

 

Data selection 

 

Traps pulled with zero catches, traps containing dead or injured lobsters, and 

treatment traps whose seeds escaped were excluded from comparisons among treatments.  

When a trap was set in poor lobster habitat, or when a trap was improperly set (e.g., if the 

trap door was open when retrieved), the catch of that trap was typically zero.  Also, on 

occasion, an octopus (Octopus maorum) was caught that had injured or killed a trapped 

lobster, or lobster remains were found in the trap implying consumption by a predator.  

Moreover, when a seeded lobster escaped a treatment, that trap ceased to be a treatment.  

Consequently, we excluded these problematic traps from statistical tests and catch rate 

calculations.  To check whether this data-selection procedure was critical, data were also 

analyzed without the non-zero selection criterion.   

 

Tests of hypotheses 

 

The primary null hypothesis was no difference among treatment and control traps 

in the mean number of small lobsters that are caught.  Significance was tested with a two-

way (Model 1) ANOVA (as described by Zar 1996) with interaction.  The model was 

ijkijjiijkx εγδτµ ++++=     (1) 
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where:   xijk =  a catch observation, i.e. catch in the kth replicate of the ijth 

combination of main factors  

  µ = overall mean number of small lobsters caught 

  τi = ith treatment (or lobster seed) effect 

  δj = jth season effect 

  γij = interaction effect 

  εijk = random error 

Subscripts for treatments (i) in the model were: 1 = large female seed, 2 = large male 

seed, 3 = biomass control (2 small female seeds), and 4 = no-seed control.  Subscripts for 

season (j) were: 1 = spring, or 2 = summer.  If seasonal effects were not significant, the 

experimental model reduced to a one-way ANOVA:  

ikiikx ετµ ++=      (2) 

with symbols as before.  If interaction effects were significant, two-way ANOVA for 

treatment effects was inappropriate (Underwood 1997), and seasons were analyzed 

separately by one-way ANOVA as described in equation 2.  Difference in catch rates 

between moon phases was also tested for by one-way ANOVA with all catch data pooled 

for each moon phase.   

Count data were transformed prior to ANOVA because variances were 

heterogeneous among treatments, and treatment variances were proportional to treatment 

means (Zar 1996).  The transformation used was a modified square root transformation, 

as described in Freeman and Tukey (1950): 

   1' ++= xxx      (3) 
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where x' = transformed count, and x = observed count.  Freeman and Tukey (1950) found 

that this transformation stabilized variances for Poisson data when the expectation of x 

was < 2.  If transformed counts were found to be significantly different in any ANOVA 

comparison, Tukey’s multiple comparison test was used to determine which treatment 

means differed significantly.  All ANOVA comparisons of transformed counts of small 

entrants were made overall (sexes combined) and separately by sex.   

 Differences between treatments in a field experiment were expected to be 

minimized by the entry of large animals into the control traps.  Once a large animal enters 

a control, the trap is effectively no different from a female- or male-treatment trap.  This 

unavoidable situation in the field weakens the signal of treatment effect in an ANOVA 

test, so an additional test was applied in case the hypothesized treatment effect was too 

weak to be significant in ANOVA.   

A one-tailed binomial test of significance was used to test the null hypothesis Ho: 

none of the treatments had an effect on the number of small entrants, against the 

alternative hypothesis Ha: at least some of the treatments had an effect in reducing the 

catch of small animals.  If none of the treatments affect the number of small animals 

entering the trap, one should expect to see more small entrants in the control traps than in 

the treatment traps half of the time.  Let Xh equal the difference in mean counts of small 

animals between control traps and the hth treatment x time (season) combination.  When 

considering the small animals caught in all three treatments and both seasons, there are 

six possible comparisons.  When the small animals caught are divided by sex there are 12 

possible comparisons.  Let Yh = 1 if Xh is positive (i.e., control catch > treatment catch) 

and let Yh = 0 if Xh is negative.  (Any cases where X is 0 are ignored.)  The variable V = 
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ΣY is approximately binomially distributed.  Thus, under the null hypothesis that none of 

the treatments has an effect, when sexes of entrants are pooled:  

V~B(0.5, 6);  E(V) = 3    (4) 

and when entrants are separated by sex: 

V~B(0.5, 12);  E(V) = 6    (5) 

(assuming no Xh = 0).   

 A binomial test is not entirely appropriate in this application because the 

comparisons of experimental treatments with controls are not completely independent, 

i.e., three treatments are compared to the same control.  A randomization test (see 

Edgington 1995), i.e., a Monte Carlo random re-assignment of the catches to the 

treatments to determine the null distribution of V, is more appropriate since a binomial 

test could be overly sensitive (overstate the significance).  However, a comparison of 

these tests revealed that the distribution of the binomial test statistic under the null 

hypothesis was similar to the null distribution of the randomization probabilities, 

regardless of whether 6 or 12 comparisons were made (Figs. 1.3, 1.4).  A binomial test 

offers a useful approximation to the results of the more rigorous randomization test 

because it is less computationally demanding to perform.  We set α = 0.05 for all 

significance tests.   
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RESULTS 

 

 There were 444 traps set in all of the collections combined.  Of these, 84% caught 

lobsters. The percentage of each treatment excluded from significance testing due to zero 

catch was: controls – 15.3%, biomass controls – 10.0%, large-female treatments – 5.6%, 

and large-male treatments – 13.5%.  Six traps (1.1% of all traps set) were excluded due to 

death and predation.  Of 268 seeds set in traps, about one third (34.3%) escaped and these 

traps were also excluded.  After problematic traps were excluded, 293 traps remained for 

statistical analyses and catch rates calculations.   

Most animals caught were identifiable by sex, and control traps caught a slightly 

higher sex ratio (male: female) during summer compared to spring, but even higher ratios 

were observed in female-seeded traps during summer.  Of the 1680 animals caught in all 

traps (n = 375 trap-hauls), 1679 were identifiable by sex.  The sex ratio (male: female) in 

control traps during spring was 1.1: 1 (Fig. 1.1), but a slightly higher proportion of males 

was observed during summer, when the sex ratio was 1.4:1.  Spring sex ratios were 

generally similar for all treatments, but summer ratios were markedly higher for the 

large-female treatment and slightly higher for the biomass control (3.0:1 and 1.6:1, 

respectively) than the other treatments.  The presence of any female seed appeared to 

increase the proportion of males caught during the summer, but not during spring.  

Size frequency plots appear similar across treatments and sexes during spring 

catches, but the size range of females caught was reduced in female treatments during 
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summer.  The size range of females caught during summer in the large-female treatment 

was reduced by 50%, and the biomass-control was reduced by 40% compared to those 

caught during spring.  Similar restrictions in the sizes of females caught were not 

observed for the large-male treatment and the control, though the extremely large and 

small animals of both sexes caught in these treatments during spring trials were not 

observed again in summer.  Though the large-female treatment and the biomass control 

also caught fewer males > 160 mm CL in summer, the size distribution of males captured 

was generally similar across treatments during both seasons.  Consequently, female seeds 

appear to have restricted the entry of other females during the summer, but not males.      

Significantly fewer small animals were captured in large-female treatments during 

summer trials than during spring.  The transformed total number of lobsters caught had a 

significant interaction between seasons and treatments (P = 0.0106), so ANOVA was 

performed separately by season.  Spring catches of small lobsters did not differ 

significantly among treatments (Table 1.1).  However, summer catches did differ 

significantly between the large-female treatment and control.  When small-lobster catches 

were examined separately by sex, it was found that differences in summer were entirely 

due to the reduced catch of small females in the large-female treatment compared to the 

control.  Small-male catches did not differ significantly among treatments in either 

season.   

When ANOVAs were done without excluding zero catches (n = 347 trap-hauls), 

mean transformed catches of small lobsters did not differ significantly among treatments 

for either season regardless of whether data were separated by sex or pooled.  All F-
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values from ANOVA comparisons of summer catches were smaller when zero catches 

were included (Table 1.2).    

No significant differences were found in the catches of small lobsters, or in the 

catches of small lobsters by sex, during different moon phases in the spring (Table 1.3). 

Direct comparisons of mean catch rates of controls to each treatment, plotted by 

sex of the entrants (Fig. 1.2) revealed that the strongest seasonal effect of treatment on 

catch rates occurred in the large-female treatment.  While spring mean catch rates of 

small animals in treatment traps (combined and separated by sex; Table 1.4 and Fig. 1.2) 

were only slightly lower than those of the control, summer catch rates of small animals 

was reduced by 71% in large-female treatments and by 44% in biomass-control traps (the 

other female treatment).  The summer mean catch rate of small animals in the large-male 

treatment was only slightly reduced (6%) when compared to the control.  When summer 

catch rates of small animals were examined separately by sex, both small female and 

small male entrants were greatly reduced in large-female treatments relative to those in 

control traps (small female and small male reductions were 87% and 52%, respectively).  

Correspondingly, catch rates of small animals in the biomass-control traps also decreased 

in the summer relative to control traps (small female and small male reductions were 37% 

and 52%, respectively).  When catch rate trends in control traps were examined 

separately by sex, the catch rate of small males increased from 0.50/trap in spring to 

0.73/trap in summer, but the catch of small females was relatively constant over the two 

seasons (spring: 0.82/trap; summer: 0.88/trap).   
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Catch rates of small animals in the control traps were always greater than those of 

the other treatments when sexes were combined (Table 1.4), regardless of season (P = 

0.0156, P = 0.0368, binomial and randomization tests, respectively; Fig. 1.3).  Therefore, 

the null hypothesis that treatments have no effect on the catch of small animals was 

rejected.  When counts of small animals were separated by sex (Fig. 1.2), the catch in the 

control traps was still greater than that of the treatments in 11 out of 12 cases (P = 0.0032, 

P = 0.0103, binomial and randomization tests, respectively; Fig. 1.4).  The one instance 

when the mean of a treatment catch exceeded that of the control was during summer, 

when the large-male treatment caught more small females.  The mean summer catch rate 

of small females in the large-male treatment also had the largest standard error of the 12 

estimates.   

When zero catches were included for the binomial and randomization tests, 

significance was similar to that found when zero catches were excluded.   The ranking of 

treatment mean catch rates remained consistent, but values were reduced, and the control 

catch rate was then greater than the treatment catch rates in 12 of 12 comparisons of the 

number of small females and small males captured (P = 0.0002, P = 0.0013, binomial and 

randomization tests, respectively).         
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DISCUSSION 

 

 We demonstrate a strong inhibition effect of large female lobsters on small 

lobsters entering traps in summer.  Seeding a trap at that time with one large female 

lobster, or two small female lobsters, reduced the subsequent catch of small lobsters by 

71% and 44%, respectively.  Though consistent with Frusher and Hoenig (2001), our 

results suggest that a strong inhibitory effect of a large lobster may be limited to females 

in summer.  Large male seeds in summer, and all seeds in spring, have only a slight 

negative effect on the subsequent catch of small lobsters.   

Other studies have documented that any seed reduces the catch of Homarus spp. 

(Richards et al. 1983; Addison 1995; Miller and Addison 1995; Addison and Bannister 

1998), and that behavioural interactions both inside and outside the trap can limit the 

catch of Homarus spp. (Karnofsky and Price 1989; Jury et al. 2001).  However, only one 

other study has provided evidence of inhibition of Jasus spp. from entering traps.  Green 

(2002) noted in video observations that behavioural interactions limit trap entry of 

“small” J. edwardsii.  Unfortunately, her observations took place during a five-month 

period that spanned peak mating and she could not identify animals by sex.  Sample size 

was small so Green drew no quantitative conclusions, but the aggressive behavioural 

interactions she observed suggest a possible mechanism for the trapping inhibition of 

small lobsters reported here.  
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Sex differences 
 

Female seeds reduced the catch of small females and small males during summer, 

but male seeds may have increased the catch of small females.  When catches of small 

animals were examined by sex, it was clear that seeding a trap with one large female or 

two small females reduced the subsequent catch of both small females and small males 

during summer.  The strongest inhibitory effect was observed between large female seeds 

and small female lobsters.  The mean summer catch rate of small females was reduced by 

87% in the presence of a large female seed.  This confirms the observations of Frusher 

and Hoenig (2001), who saw the strongest negative correlations between the catches of 

these two subgroups.  However, traps seeded with one large male caught more small 

females than did controls in summer (Fig. 1.2).  This difference was slight, and could 

have been due to small sample size.  But, if sexually mature females compete for 

preferred males, as suggested by MacDiarmid and Butler (1999), males (including the 

largest that we could catch) might be expected to attract small, but sexually mature 

females in late February, about 1 ½ months before mating begins (Ziegler et al. 2004).  

Thus, while large females inhibited small lobsters of both sexes from entering traps prior 

to the onset of the mating season, large males appeared to have the opposite effect on 

small females during this time.        

A male seed inhibitory effect on the catch of small lobsters (males and females 

combined) may not be strong enough to be detected by our study design at this point in 

the summer, and further sampling will be necessary to confirm that large males inhibit 

the entry of small lobster into traps.  Frusher and Hoenig (2001) reported that the catch of 
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large males had a strong negative correlation with the catch of small animals, in the same 

Tasmanian reserve studied here.  However, they sampled over much of the year and did 

not account for seasonality in their study, and this may explain the difference between the 

studies.  MacDiarmid (1989) reported that agonistic behaviour between large male J. 

edwardsii and any other male, in a northeast New Zealand reserve, was highly seasonal 

and began as early as five months prior to the peak mating period.  The aggressive 

behaviours of males became more common as the mating season approached and were 

most frequent during the peak mating period.  Thus, a male-inhibitory effect on the catch 

of small lobsters may still be weak in late February in Tasmania, when peak mating 

occurs at the beginning of May (Ziegler et al. 2004).  The attractant effect large males 

may have had on small females would have further weakened any detectable signal of 

male inhibition.  Hence, large-male inhibition of small animals may not have been strong 

enough to be detected by our study design at the time of our experiment.  Lack of a 

strong large-male inhibitory effect in our data, and the strong negative correlations 

between large-male lobsters and small animals reported by Frusher and Hoenig (2001) 

suggest that sampling during more months will be necessary to confirm that large-male 

southern rock lobsters negatively impact the catch of small animals. 

 

Fishery management implications 

 

 Various workers have reported strong inhibitory effects of trap occupants on 

prospective entrants for a variety of species (Heydorn 1969; Richards et al. 1983; 

Addison 1995).  Reports that small animals are underrepresented in traps are common 
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(Pollock and Beyers 1979; Miller 1989; Tremblay and Smith 2001; Ziegler et al. 2002).  

Winstanley (1977) documented anecdotal reports from fishermen that large J. edwardsii 

prevented the entry of smaller lobster into traps, and Green (2002) documented that larger 

lobster prevented smaller ones from entering traps.   

 It was somewhat surprising, therefore, that the strong interactions observed here 

were limited to females in the summer.  However, previous work on J. edwardsii has 

established that aggressive behaviours related to mating are highly seasonal (MacDiarmid 

1989).  The video documentation of lobster interactions reported by Green (2002) also 

took place during a period which included the peak mating season.  The strong trapping 

inhibition reported here similarly appears to be related to the mating season.  More work 

is needed to determine whether trapping inhibition occurs at times other than the mating 

season.  However, it seems clear that catch rates of sublegal-sized lobsters observed just 

before and after the mating season should not be used as an index of recruitment because 

the index is affected by the abundance of large animals.         

 Large females inhibit small animals from entering traps in late February in 

Tasmania, and work by MacDiarmid (1989) and MacDiarmid et al. (1991) suggests that 

large males are also likely to inhibit small animals from April to June in Tasmania during 

mating.  Thus, the consequences of an increasing catch efficiency for small animals as 

large animals are depleted, as discussed by Frusher et al. (2003), must be considered 

carefully before the catch of sublegal-size animals is used as an index of recruitment to 

the fishery here.  Recruitment indices based on sublegal catches have been useful in 

predicting the catch of Panulirus spp. (Caputi and Brown 1986; Caputi et al. 1995; Cruz 

et al. 2001), but application of sublegal catch data for predicting catch of Jasus spp. is 
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limited.  In recent work, Bentley et al. (2005) concluded that sublegal indices based on 

commercial catch of J. edwardsii showed promise in predicting catch per unit of effort 

(CPUE) the following year.  But they found useful results in only half of the areas where 

indices were available in New Zealand, and their CPUE predictions based on sublegal 

indices were often underestimated.  If small lobsters are inhibited from entering traps by 

large lobsters during any portion of the year, as our results suggest for J. edwardsii in 

Tasmania, the seasonally-integrated sublegal index described by Bentley et al. (2005) 

may be unreliable because trapping inhibition of sublegal lobsters is not accounted for.   

 

Data selection 
 

 The zero catches that were excluded from the analysis did not affect the overall 

patterns observed in the data, but allowed for greater resolution of biologically important 

patterns.  Even though differences among catch rates were fairly clear for female 

treatments in the summer (Fig. 1.2), the inclusion of zero catches weakened this signal so 

that no significant differences in the catch of small animals were found among treatments 

with ANOVA.  Additionally, with the zero catches included, the mean number of small 

lobster caught was always greater in control traps than in other treatments.  This result 

suggests greater significance in the binomial and randomization tests, and thus, a stronger 

non-random effect of the treatment seeds.  However, the one instance where a treatment 

caught more small animals than the control (summer: male treatment) was obscured by 

the inclusion of the zero catches.  Documenting an attractant effect of a male seed on the 

catch of small animals is as important as documenting an inhibitory effect of a female 



31 
 
 

seed.  Thus, the exclusion of the zero catches was critical to discern significant 

differences in ANOVA and to fully appreciate the subtle effects that different treatment 

seeds may have had in different seasons.    

 

Other considerations 
 

 Predation and injury were not important factors affecting the catch of small 

lobster in our study, as only 1 % of traps were excluded due to these factors.      

 Moon phase did not have a statistically significant effect on spring catches.  

Previous work has documented that the catch of multiple Panulirus spp. varies with 

moon phase (reviewed by Srisurichan et al. 2005).  A similar relationship between catch 

and moon phase has not yet been demonstrated for Jasus spp., though only one other 

study has considered the potential effect.  MacDiarmid et al. (1991) reported that moon 

phase was not correlated with J. edwardsii movement in visual tracking of tagged 

lobsters via SCUBA, though that work was not concerned with the catchability of the 

animals.  Considering the well-documented effect that moon phase has on other 

palinurids, this effect should be tested further before being considered unimportant for 

the catchability of J. edwardsii.  It is unfortunate that only one round of field trials was 

possible during summer sampling in this study, as this precluded testing for lunar effect 

during that season.   

Our sex-specific treatment design allowed better understanding of observed sex 

ratios in this study, and those of previous work.  The sex ratios reported here are similar 

to those reported by Ziegler et al. (2004) for trap catches in the same reserve during the 
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same months four years earlier.  Ziegler et al. (2004) reported that male catchability 

increases strongly during the month of February, and it was interesting that our 

independent February sampling confirmed this high ratio of males, but only in large-

female treatments.  Thus, our data suggest that the male-dominated sex ratio observed in 

both studies was due to large females inhibiting the entry of other females at this time of 

year.  Females may improve their chances of mating with a preferred male and 

maximizing their clutch size (MacDiarmid and Butler 1999) by excluding other females 

prior to the onset of the moulting and mating period.   

 

Conclusion 

 

The behavioural effects on the indices of abundance of sublegal animals are complex for 

J. edwardsii and need to be better resolved before sublegal indices can be corrected for in 

all seasons; however, it may be better to just sample in the spring when behavioural 

interactions related to mating do not occur.  This work establishes that catch rates of 

small lobsters in traps in summer are influenced by population composition through 

behavioural interactions involving attraction into traps or inhibition from entering traps, 

depending on the sex and size of the lobsters already in a trap and the sex and size of the 

potential trap entrant.  Experimental replication is needed over multiple years and at more 

times each year to confirm these complex seasonal patterns of social interactions, and 

their effect on the catchability of sublegal J. edwardsii.  Our study has been limited to 

examining whether the catchability of sublegal lobsters is affected by the presence of one 

large lobster already in a trap.  Future investigations should also examine whether the 
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inhibitory (or attractant) effect of a trap seed on catch is greater when more lobster seeds 

are used per trap.  The experimental approach used here will be useful to accomplish 

these tasks, and can lead to insights critical for the accurate interpretation of trap surveys.  
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APPENDIX 

Catch data for all traps set.  Counts are totals per trap.  Abbreviations: Treatment denotes 

the lobster seed used: B = biomass control (two sublegal-sized females), C = control, F = 

large female, or M = large male; Escape denotes whether trap was problematic: N = seed 

did not escape, Y = seed escaped, S = seed appeared sick, D = a dead lobster was present 

in the trap; total counts of lobsters caught per trap by subgroup: LF = legal-sized females, 

SF = sublegal-sized females, LM = legal-sized males, SM = sublegal-sized males, Lg = 

legal-sized (large) animals, and Sm = sublegal (small) animals; Moon denotes 

moonphase, either F = full, or N = new.   

 

Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon
11/11/2003 1 C  0 0 0 1 1 0 1 F 
11/11/2003 2 C  3 0 3 0 6 6 0 F 
11/11/2003 3 C  1 0 4 1 6 5 1 F 
11/11/2003 4 B N 0 0 0 0 0 0 0 F 
11/11/2003 5 M N 1 2 2 0 5 3 2 F 
11/11/2003 6 B N 4 4 1 0 9 5 4 F 
11/11/2003 7 F N 1 0 4 4 9 5 4 F 
11/11/2003 8 C  1 0 1 0 2 2 0 F 
11/11/2003 9 C  1 0 2 0 3 3 0 F 
11/11/2003 10 F N 2 1 4 0 7 6 1 F 
11/11/2003 11 B N 0 0 2 1 3 2 1 F 
11/11/2003 12 M N 1 0 3 1 5 4 1 F 
11/11/2003 13 C  1 1 1 0 3 2 1 F 
11/11/2003 14 C  2 1 1 1 5 3 2 F 
11/11/2003 15 F N 1 0 0 1 2 1 1 F 
11/11/2003 16 M N 1 0 3 1 5 4 1 F 
11/11/2003 17 B N 2 0 3 0 5 5 0 F 
11/11/2003 18 M Y 1 1 1 3 6 2 4 F 
11/11/2003 19 C  4 0 3 1 8 7 1 F 
11/11/2003 20 M Y 1 0 1 1 3 2 1 F 
11/11/2003 21 C  2 0 4 0 6 6 0 F 
11/11/2003 22 C  0 0 0 0 0 0 0 F 
11/11/2003 23 C  0 1 1 2 4 1 3 F 
11/11/2003 24 B Y 0 0 1 0 1 1 0 F 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/11/2003 25 C  4 2 1 1 8 5 3 F 
11/11/2003 26 C  1 1 0 0 2 1 1 F 
11/11/2003 27 M N 2 1 0 1 4 2 2 F 
11/11/2003 28 F N 0 0 3 0 3 3 0 F 
11/11/2003 29 C  3 2 0 4 9 3 6 F 
11/11/2003 30 B N 2 0 0 0 2 2 0 F 
11/11/2003 31 F N 4 4 1 2 11 5 6 F 
11/11/2003 32 F N 1 0 3 0 4 4 0 F 
11/11/2003 33 B Z 1 0 0 0 1 1 0 F 
11/11/2003 34 C  2 0 3 1 6 5 1 F 
11/11/2003 35 C  0 0 1 0 1 1 0 F 
11/11/2003 36 C  3 1 3 1 8 6 2 F 
11/11/2003 37 M N 1 0 3 1 5 4 1 F 
11/11/2003 39 F N 3 1 3 0 7 6 1 F 
11/11/2003 40 B N 10 1 0 0 11 10 1 F 
11/11/2003 41 B N 2 0 4 0 6 6 0 F 
11/11/2003 42 M N 0 0 0 0 0 0 0 F 
11/11/2003 43 M N 0 0 1 0 1 1 0 F 
11/11/2003 45 C  1 2 0 0 3 1 2 F 
11/11/2003 46 C  1 0 2 0 3 3 0 F 
11/11/2003 47 C  2 0 0 0 2 2 0 F 
11/11/2003 48 F N 6 3 2 0 11 8 3 F 
11/11/2003 49 B N 0 1 2 0 3 2 1 F 
11/11/2003 50 F N 0 0 6 0 6 6 0 F 
11/12/2003 1 C  0 0 2 0 2 2 0 F 
11/12/2003 2 M N 0 0 3 0 3 3 0 F 
11/12/2003 3 M N 0 0 2 1 3 2 1 F 
11/12/2003 4 C  0 0 1 0 1 1 0 F 
11/12/2003 5 C  0 1 2 0 3 2 1 F 
11/12/2003 6 C  2 1 2 0 5 4 1 F 
11/12/2003 7 B Y 0 0 3 0 3 3 0 F 
11/12/2003 8 C  0 0 3 0 3 3 0 F 
11/12/2003 9 B N 0 0 0 0 0 0 0 F 
11/12/2003 10 F D 1 0 1 0 2 2 0 F 
11/12/2003 11 B N 0 0 4 0 4 4 0 F 
11/12/2003 12 B Y 3 0 0 0 3 3 0 F 
11/12/2003 13 M Y 0 0 2 0 2 2 0 F 
11/12/2003 14 M N 4 0 4 0 8 8 0 F 
11/12/2003 15 B N 0 1 2 0 3 2 1 F 
11/12/2003 16 C  1 0 1 1 3 2 1 F 
11/12/2003 17 C  2 0 1 0 3 3 0 F 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/12/2003 18 C  1 1 2 2 6 3 3 F 
11/12/2003 19 B N 0 1 2 1 4 2 2 F 
11/12/2003 20 F Y 2 0 0 0 2 2 0 F 
11/12/2003 21 F Y 4 0 2 0 6 6 0 F 
11/12/2003 22 F N 0 1 0 1 2 0 2 F 
11/12/2003 23 C  1 2 0 1 4 1 3 F 
11/12/2003 24 F N 0 0 0 0 0 0 0 F 
11/12/2003 25 F N 5 3 0 1 9 5 4 F 
11/12/2003 26 M N 1 1 2 1 5 3 2 F 
11/12/2003 27 B D 8 3 0 0 11 8 3 F 
11/12/2003 28 F N 1 0 1 1 3 2 1 F 
11/12/2003 29 F N 0 0 0 1 1 0 1 F 
11/12/2003 30 M Y 1 0 2 0 3 3 0 F 
11/12/2003 31 M N 0 0 2 1 3 2 1 F 
11/12/2003 32 C  1 1 1 0 3 2 1 F 
11/12/2003 33 C  1 1 0 0 2 1 1 F 
11/12/2003 34 C  3 0 1 0 4 4 0 F 
11/12/2003 35 C  0 0 0 0 0 0 0 F 
11/12/2003 36 C  0 1 3 0 4 3 1 F 
11/12/2003 37 B N 0 0 6 0 6 6 0 F 
11/12/2003 38 C  0 0 0 0 0 0 0 F 
11/12/2003 39 C  5 3 0 1 9 5 4 F 
11/12/2003 40 C  1 1 1 0 3 2 1 F 
11/12/2003 41 M N 1 0 1 0 2 2 0 F 
11/12/2003 42 B N 0 0 1 1 2 1 1 F 
11/12/2003 43 M N 0 0 1 0 1 1 0 F 
11/12/2003 45 M Y 0 0 0 0 0 0 0 F 
11/12/2003 46 C  0 0 0 0 0 0 0 F 
11/12/2003 47 B Y 2 0 5 1 8 7 1 F 
11/12/2003 48 F N 1 1 3 1 6 4 2 F 
11/12/2003 49 F N 2 1 3 1 7 5 2 F 
11/12/2003 50 C  5 0 2 1 8 7 1 F 
11/13/2003 1 C  0 0 0 0 0 0 0 F 
11/13/2003 2 B N 0 0 3 0 3 3 0 F 
11/13/2003 3 C  0 0 2 0 2 2 0 F 
11/13/2003 4 B N 0 0 0 0 0 0 0 F 
11/13/2003 5 F N 1 0 2 0 3 3 0 F 
11/13/2003 6 M N 0 0 2 0 2 2 0 F 
11/13/2003 7 F Y 3 1 0 1 5 3 2 F 
11/13/2003 8 M N 0 0 2 0 2 2 0 F 
11/13/2003 9 C  3 3 3 3 12 6 6 F 
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(continued)            

Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon
11/13/2003 10 C  1 0 0 0 1 1 0 F 
11/13/2003 11 F N 3 0 2 0 5 5 0 F 
11/13/2003 12 M Y 0 0 0 0 0 0 0 F 
11/13/2003 13 F N 1 1 2 0 4 3 1 F 
11/13/2003 14 B N 7 1 2 0 10 9 1 F 
11/13/2003 15 B N 4 0 0 1 5 4 1 F 
11/13/2003 16 B Y 7 1 2 0 10 9 1 F 
11/13/2003 17 B Y 3 0 0 0 3 3 0 F 
11/13/2003 18 F N 0 0 1 0 1 1 0 F 
11/13/2003 19 M N 0 0 0 0 0 0 0 F 
11/13/2003 20 C  1 3 5 1 10 6 4 F 
11/13/2003 21 M D 1 2 1 0 4 2 2 F 
11/13/2003 22 C  0 3 0 1 4 0 4 F 
11/13/2003 23 M N 0 0 1 0 1 1 0 F 
11/13/2003 24 B N 0 0 0 0 0 0 0 F 
11/13/2003 25 M N 0 0 0 0 0 0 0 F 
11/13/2003 26 B N 3 0 0 3 6 3 3 F 
11/13/2003 27 F S 0 0 0 0 0 0 0 F 
11/13/2003 28 C  1 0 0 0 1 1 0 F 
11/13/2003 29 C  0 0 0 0 0 0 0 F 
11/13/2003 30 C  0 0 0 0 0 0 0 F 
11/13/2003 31 F N 0 0 0 0 0 0 0 F 
11/13/2003 32 B N 0 0 2 0 2 2 0 F 
11/13/2003 33 B N 5 0 0 0 5 5 0 F 
11/13/2003 34 C  0 1 0 0 1 0 1 F 
11/13/2003 35 C  0 1 0 0 1 0 1 F 
11/13/2003 36 C  4 1 4 1 10 8 2 F 
11/13/2003 37 C  5 4 3 2 14 8 6 F 
11/13/2003 38 C  0 0 1 0 1 1 0 F 
11/13/2003 39 F Y 0 0 1 0 1 1 0 F 
11/13/2003 40 C  1 1 0 1 3 1 2 F 
11/13/2003 41 M N 6 0 0 0 6 6 0 F 
11/13/2003 42 F N 0 0 0 0 0 0 0 F 
11/13/2003 43 M N 0 0 0 0 0 0 0 F 
11/13/2003 45 M N 0 0 0 0 0 0 0 F 
11/13/2003 46 C  0 0 0 0 0 0 0 F 
11/13/2003 47 C  1 3 1 2 7 2 5 F 
11/13/2003 48 F N 1 0 0 0 1 1 0 F 
11/13/2003 49 C  0 0 0 0 0 0 0 F 
11/13/2003 50 C  1 1 4 0 6 5 1 F 
11/25/2003 1 F N 1 0 1 0 2 2 0 N 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/25/2003 2 C  1 0 1 1 3 2 1 N 
11/25/2003 3 B Y 0 0 2 0 2 2 0 N 
11/25/2003 4 C  0 1 1 0 2 1 1 N 
11/25/2003 5 B Y 1 2 5 1 9 6 3 N 
11/25/2003 6 C  0 1 5 0 6 5 1 N 
11/25/2003 7 C  1 2 2 1 6 3 3 N 
11/25/2003 8 F N 1 0 6 0 7 7 0 N 
11/25/2003 10 M N 3 3 4 0 10 7 3 N 
11/25/2003 11 C  0 0 2 1 3 2 1 N 
11/25/2003 12 C  1 1 0 0 2 1 1 N 
11/25/2003 13 F Y 0 1 3 2 6 3 3 N 
11/25/2003 14 C  3 2 2 0 7 5 2 N 
11/25/2003 15 B N 0 0 4 0 4 4 0 N 
11/25/2003 16 C  2 3 2 2 9 4 5 N 
11/25/2003 17 C  1 0 5 0 6 6 0 N 
11/25/2003 18 M N 0 6 4 0 10 4 6 N 
11/25/2003 19 M Y 1 4 0 2 7 1 6 N 
11/25/2003 20 M Y 0 0 0 0 0 0 0 N 
11/25/2003 21 B Y 1 1 3 0 5 4 1 N 
11/25/2003 22 B Y 0 3 0 3 6 0 6 N 
11/25/2003 23 M Y 0 0 2 0 2 2 0 N 
11/25/2003 24 F Y 0 0 1 0 1 1 0 N 
11/25/2003 25 B Y 3 2 5 0 10 8 2 N 
11/25/2003 26 C  5 3 2 0 10 7 3 N 
11/25/2003 27 M Y 1 1 3 1 6 4 2 N 
11/25/2003 28 M N 0 0 1 0 1 1 0 N 
11/25/2003 29 B Y 0 1 2 0 3 2 1 N 
11/25/2003 30 C  3 2 3 0 8 6 2 N 
11/25/2003 31 M N 1 2 0 2 5 1 4 N 
11/25/2003 32 B N 1 2 1 0 4 2 2 N 
11/25/2003 33 C  1 0 1 0 2 2 0 N 
11/25/2003 34 C  3 3 4 1 11 7 4 N 
11/25/2003 35 C  0 0 0 0 0 0 0 N 
11/25/2003 36 C  2 0 3 0 5 5 0 N 
11/25/2003 37 B N 1 1 2 1 5 3 2 N 
11/25/2003 38 C  0 1 1 1 3 1 2 N 
11/25/2003 39 F N 11 2 3 0 16 14 2 N 
11/25/2003 40 F N 1 1 1 0 3 2 1 N 
11/25/2003 41 F Y 6 4 3 0 13 9 4 N 
11/25/2003 42 F N 0 0 0 0 0 0 0 N 
11/25/2003 43 C  4 2 2 1 9 6 3 N 
11/25/2003 44 M Y 0 0 0 0 0 0 0 N 
11/25/2003 45 M Y 1 0 4 0 5 5 0 N 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/25/2003 46 F Y 0 0 0 0 0 0 0 N 
11/25/2003 47 B Y 4 0 2 0 6 6 0 N 
11/25/2003 48 C  1 0 3 0 4 4 0 N 
11/25/2003 49 F N 3 0 1 0 4 4 0 N 
11/25/2003 50 C  0 0 1 0 1 1 0 N 
11/26/2003 1 C  3 0 2 0 5 5 0 N 
11/26/2003 2 F Y 1 0 3 0 4 4 0 N 
11/26/2003 3 C  1 1 1 0 3 2 1 N 
11/26/2003 4 B Y 0 0 0 0 0 0 0 N 
11/26/2003 5 M Y 1 2 1 1 5 2 3 N 
11/26/2003 6 F Y 0 0 2 1 3 2 1 N 
11/26/2003 7 C  1 3 3 2 9 4 5 N 
11/26/2003 8 C  0 1 1 0 2 1 1 N 
11/26/2003 9 C  0 0 1 0 1 1 0 N 
11/26/2003 10 M Y 1 0 0 0 1 1 0 N 
11/26/2003 11 C  0 1 2 1 4 2 2 N 
11/26/2003 12 B Y 0 0 2 0 2 2 0 N 
11/26/2003 13 M N 0 0 0 0 0 0 0 N 
11/26/2003 14 B N 1 1 2 0 4 3 1 N 
11/26/2003 15 M N 0 0 0 0 0 0 0 N 
11/26/2003 16 F N 2 0 0 0 2 2 0 N 
11/26/2003 17 F N 0 0 5 0 5 5 0 N 
11/26/2003 18 B N 6 1 6 2 15 12 3 N 
11/26/2003 19 M N 2 0 0 0 2 2 0 N 
11/26/2003 20 C  1 0 0 0 1 1 0 N 
11/26/2003 21 C  1 1 1 0 3 2 1 N 
11/26/2003 22 C  0 0 1 1 2 1 1 N 
11/26/2003 23 B N 0 0 0 0 0 0 0 N 
11/26/2003 24 F Y 0 0 0 0 0 0 0 N 
11/26/2003 25 M N 2 0 2 0 4 4 0 N 
11/26/2003 26 F N 3 1 1 0 5 4 1 N 
11/26/2003 27 M Y 0 0 0 1 1 0 1 N 
11/26/2003 28 B Y 1 1 1 0 3 2 1 N 
11/26/2003 29 C  1 0 0 0 1 1 0 N 
11/26/2003 30 C  2 2 4 0 8 6 2 N 
11/26/2003 31 B Y 1 0 1 1 3 2 1 N 
11/26/2003 32 B N 1 1 1 1 4 2 2 N 
11/26/2003 33 C  2 1 1 0 4 3 1 N 
11/26/2003 34 F N 1 0 0 1 2 1 1 N 
11/26/2003 35 F Y 0 1 2 0 3 2 1 N 
11/26/2003 36 F Y 3 1 4 1 9 7 2 N 
11/26/2003 37 C  0 0 2 0 2 2 0 N 
11/26/2003 38 C  2 1 1 1 5 3 2 N 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/26/2003 39 M N 0 0 2 0 2 2 0 N 
11/26/2003 40 M N 0 1 1 0 2 1 1 N 
11/26/2003 41 B N 1 0 4 0 5 5 0 N 
11/26/2003 42 C  0 0 1 0 1 1 0 N 
11/26/2003 43 B N 0 0 1 0 1 1 0 N 
11/26/2003 44 M Y 0 0 2 0 2 2 0 N 
11/26/2003 45 C  1 0 0 0 1 1 0 N 
11/26/2003 46 C  0 0 0 0 0 0 0 N 
11/26/2003 47 C  2 0 4 0 6 6 0 N 
11/26/2003 48 C  0 0 0 0 0 0 0 N 
11/26/2003 49 F N 2 1 2 0 5 4 1 N 
11/26/2003 50 C  0 0 6 1 7 6 1 N 
11/27/2003 1 C  1 0 1 1 3 2 1 N 
11/27/2003 2 C  1 0 6 0 7 7 0 N 
11/27/2003 3 B N 1 1 3 0 5 4 1 N 
11/27/2003 4 C  0 0 0 0 0 0 0 N 
11/27/2003 5 F Y 1 1 2 0 4 3 1 N 
11/27/2003 6 C  4 0 0 0 4 4 0 N 
11/27/2003 7 F N 0 0 2 2 4 2 2 N 
11/27/2003 8 M N 0 1 0 0 1 0 1 N 
11/27/2003 9 F Y 2 0 3 0 5 5 0 N 
11/27/2003 10 C  0 0 0 0 0 0 0 N 
11/27/2003 11 C  1 0 3 0 4 4 0 N 
11/27/2003 12 C D 0 0 1 0 1 1 0 N 
11/27/2003 13 B N 1 2 1 0 4 2 2 N 
11/27/2003 14 M Z 0 0 0 0 0 0 0 N 
11/27/2003 15 B D 0 0 1 0 1 1 0 N 
11/27/2003 16 C  3 3 0 1 7 3 4 N 
11/27/2003 17 C  0 0 1 1 2 1 1 N 
11/27/2003 18 B N 0 1 0 3 4 0 4 N 
11/27/2003 19 M Y 1 0 0 0 1 1 0 N 
11/27/2003 20 F N 1 3 3 0 7 4 3 N 
11/27/2003 21 F N 2 0 1 0 3 3 0 N 
11/27/2003 22 C  3 1 5 1 10 8 2 N 
11/27/2003 23 C  0 1 4 1 6 4 2 N 
11/27/2003 24 C  0 0 0 0 0 0 0 N 
11/27/2003 25 B N 0 1 2 0 3 2 1 N 
11/27/2003 26 C  0 0 1 0 1 1 0 N 
11/27/2003 27 C  1 1 2 1 5 3 2 N 
11/27/2003 28 C  2 0 0 0 2 2 0 N 
11/27/2003 29 M N 1 0 1 0 2 2 0 N 
11/27/2003 30 F Y 0 0 0 0 0 0 0 N 
11/27/2003 31 B N 1 2 0 1 4 1 3 N 
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

11/27/2003 32 M Y 0 0 3 0 3 3 0 N 
11/27/2003 33 M Y 0 0 0 0 0 0 0 N 
11/27/2003 34 F N 2 1 2 0 5 4 1 N 
11/27/2003 35 C  0 0 4 0 4 4 0 N 
11/27/2003 36 F Y 0 2 1 2 5 1 4 N 
11/27/2003 37 M N 1 0 2 0 3 3 0 N 
11/27/2003 38 C  0 0 1 0 1 1 0 N 
11/27/2003 39 M Y 7 3 1 0 11 8 3 N 
11/27/2003 40 M Z 1 1 1 0 3 2 1 N 
11/27/2003 41 C  0 0 0 0 0 0 0 N 
11/27/2003 42 B N 0 0 2 0 2 2 0 N 
11/27/2003 43 B N 0 0 0 0 0 0 0 N 
11/27/2003 44 C  0 0 3 0 3 3 0 N 
11/27/2003 45 F Y 0 0 1 0 1 1 0 N 
11/27/2003 46 B Y 2 0 4 0 6 6 0 N 
11/27/2003 47 M Y 1 0 1 1 3 2 1 N 
11/27/2003 48 C  1 0 1 0 2 2 0 N 
11/27/2003 49 B Y 2 0 2 1 5 4 1 N 
11/27/2003 50 F Y 1 0 2 0 3 3 0 N 
2/25/2004 1 C  0 0 0 0 0 0 0  
2/25/2004 2 C  0 0 2 0 2 2 0  
2/25/2004 3 F Y 0 0 0 0 0 0 0  
2/25/2004 4 B N 4 3 1 1 9 5 4  
2/25/2004 6 B N 0 2 0 0 2 0 2  
2/25/2004 7 B N 0 0 2 2 4 2 2  
2/25/2004 8 F Y 3 1 1 1 6 4 2  
2/25/2004 9 B Y 0 0 1 0 1 1 0  
2/25/2004 10 F N 2 0 1 0 3 3 0  
2/25/2004 11 C  0 0 0 0 0 0 0  
2/25/2004 12 C  0 0 0 0 0 0 0  
2/25/2004 13 B Y 0 0 0 0 0 0 0  
2/25/2004 14 B N 1 0 3 0 4 4 0  
2/25/2004 15 C  1 1 3 0 5 4 1  
2/25/2004 16 F N 2 0 3 0 5 5 0  
2/25/2004 17 C  1 0 5 0 6 6 0  
2/25/2004 18 C  4 2 4 0 10 8 2  
2/25/2004 19 F N 1 0 1 0 2 2 0  
2/25/2004 20 C  1 0 0 0 1 1 0  
2/25/2004 21 C  4 1 1 0 6 5 1  
2/25/2004 22 B Y 2 1 5 2 10 7 3  
2/25/2004 23 M N 5 1 3 0 9 8 1  
2/25/2004 24 B N 1 1 2 0 4 3 1  
2/25/2004 25 F N 1 0 3 1 5 4 1  
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

2/25/2004 26 F Y 1 0 4 0 5 5 0  
2/25/2004 27 M N 0 0 1 0 1 1 0  
2/25/2004 28 B Z 1 0 0 0 1 1 0  
2/25/2004 29 M Y 0 0 2 2 4 2 2  
2/25/2004 30 B N 0 0 0 1 1 0 1  
2/25/2004 31 M N 2 0 2 0 4 4 0  
2/25/2004 32 M N 3 1 3 2 9 6 3  
2/25/2004 33 F Y 3 2 1 2 8 4 4  
2/25/2004 34 C  0 0 1 0 1 1 0  
2/25/2004 35 F N 1 0 1 1 3 2 1  
2/25/2004 36 C  4 3 7 2 16 11 5  
2/25/2004 37 M N 1 1 1 0 3 2 1  
2/25/2004 38 C  0 1 3 1 5 3 2  
2/25/2004 39 C  3 0 2 0 5 5 0  
2/25/2004 40 F N 1 0 0 0 1 1 0  
2/25/2004 41 C  2 1 3 1 7 5 2  
2/25/2004 42 M Y 0 0 1 0 1 1 0  
2/25/2004 43 M N 4 1 0 1 6 4 2  
2/25/2004 44 C  2 0 3 3 8 5 3  
2/25/2004 45 C  1 0 2 1 4 3 1  
2/25/2004 46 C  3 3 4 2 12 7 5  
2/25/2004 47 C  0 0 0 0 0 0 0  
2/25/2004 48 C  1 0 0 0 1 1 0  
2/25/2004 49 M N 0 0 2 0 2 2 0  
2/25/2004 50 M N 2 5 2 3 12 4 8  
2/26/2004 1 M N 0 0 1 0 1 1 0  
2/26/2004 2 C  0 2 0 0 2 0 2  
2/26/2004 3 B N 0 0 0 0 0 0 0  
2/26/2004 4 F Y 3 2 4 0 9 7 2  
2/26/2004 5 B N 0 0 3 0 3 3 0  
2/26/2004 6 F Y 0 0 1 0 1 1 0  
2/26/2004 7 M Y 1 1 2 1 5 3 2  
2/26/2004 8 C  0 1 1 0 2 1 1  
2/26/2004 9 B N 0 0 4 0 4 4 0  
2/26/2004 10 C  0 0 3 0 3 3 0  
2/26/2004 11 C  0 0 0 0 0 0 0  
2/26/2004 12 M N 0 0 0 0 0 0 0  
2/26/2004 13 C  0 0 1 0 1 1 0  
2/26/2004 14 F N 1 0 6 0 7 7 0  
2/26/2004 15 M Y 0 0 0 0 0 0 0  
2/26/2004 16 C  1 2 3 1 7 4 3  
2/26/2004 17 C  1 0 1 0 2 2 0  
2/26/2004 18 C  2 1 0 0 3 2 1  
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

2/26/2004 19 F N 0 0 0 0 0 0 0  
2/26/2004 20 C  0 0 0 0 0 0 0  
2/26/2004 21 B Y 1 0 4 1 6 5 1  
2/26/2004 22 F Y 2 0 0 0 2 2 0  
2/26/2004 23 C  3 1 7 0 11 10 1  
2/26/2004 24 F N 0 0 3 0 3 3 0  
2/26/2004 25 C  0 0 0 0 0 0 0  
2/26/2004 26 C  1 0 3 3 7 4 3  
2/26/2004 27 C  0 0 1 1 2 1 1  
2/26/2004 28 M Y 0 0 3 0 3 3 0  
2/26/2004 29 M N 0 0 0 0 0 0 0  
2/26/2004 30 C  1 2 1 0 4 2 2  
2/26/2004 31 M N 0 1 6 1 8 6 2  
2/26/2004 32 C  3 0 2 0 5 5 0  
2/26/2004 33 F N 1 0 4 0 5 5 0  
2/26/2004 34 M Y 0 0 1 0 1 1 0  
2/26/2004 35 B Y 1 3 1 0 5 2 3  
2/26/2004 36 C  3 5 5 3 16 8 8  
2/26/2004 37 B N 0 1 3 0 4 3 1  
2/26/2004 38 C  1 0 1 1 3 2 1  
2/26/2004 39 F N 0 0 1 1 2 1 1  
2/26/2004 40 M Y 0 0 0 0 0 0 0  
2/26/2004 41 B N 2 2 3 0 7 5 2  
2/26/2004 42 B N 1 0 0 0 1 1 0  
2/26/2004 43 F Y 3 1 0 1 5 3 2  
2/26/2004 44 M N 0 0 0 0 0 0 0  
2/26/2004 45 B N 0 0 1 0 1 1 0  
2/26/2004 46 C  1 1 3 2 7 4 3  
2/26/2004 47 C  0 0 0 0 0 0 0  
2/26/2004 48 B N 0 0 0 0 0 0 0  
2/26/2004 49 F Y 1 2 3 3 9 4 5  
2/26/2004 50 C  3 2 4 0 9 7 2  
2/27/2004 1 C  0 0 0 0 0 0 0  
2/27/2004 2 B N 0 0 0 0 0 0 0  
2/27/2004 3 C  0 0 0 0 0 0 0  
2/27/2004 4 C  2 2 3 2 9 5 4  
2/27/2004 5 C  0 0 3 0 3 3 0  
2/27/2004 6 C  0 1 1 1 3 1 2  
2/27/2004 7 C  3 1 2 0 6 5 1  
2/27/2004 8 M Y 2 1 3 1 7 5 2  
2/27/2004 9 C  0 0 1 1 2 1 1  
2/27/2004 10 F Y 2 0 1 0 3 3 0  
2/27/2004 11 M N 0 0 0 0 0 0 0  
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(continued)            
Date PotID Treatment Escape LF SF LM SM Total Lg Sm Moon

2/27/2004 12 C  0 0 0 1 1 0 1  
2/27/2004 13 F N 0 0 1 0 1 1 0  
2/27/2004 14 C  0 0 3 0 3 3 0  
2/27/2004 15 M N 0 0 0 0 0 0 0  
2/27/2004 16 C  2 2 2 0 6 4 2  
2/27/2004 17 B N 1 1 0 0 2 1 1  
2/27/2004 18 M N 2 2 2 0 6 4 2  
2/27/2004 19 C  0 0 1 0 1 1 0  
2/27/2004 20 C  0 0 0 0 0 0 0  
2/27/2004 21 C  2 2 2 2 8 4 4  
2/27/2004 22 M Y 2 0 2 1 5 4 1  
2/27/2004 23 B N 2 1 3 2 8 5 3  
2/27/2004 24 C  1 0 3 1 5 4 1  
2/27/2004 25 C  3 3 2 3 11 5 6  
2/27/2004 26 B N 0 0 2 0 2 2 0  
2/27/2004 27 C  2 0 9 2 13 11 2  
2/27/2004 28 M Y 0 0 1 0 1 1 0  
2/27/2004 29 F N 0 0 2 0 2 2 0  
2/27/2004 30 F N 0 0 1 0 1 1 0  
2/27/2004 31 C  0 0 4 0 4 4 0  
2/27/2004 32 F N 0 0 1 0 1 1 0  
2/27/2004 33 M N 0 0 1 0 1 1 0  
2/27/2004 34 M Y 0 0 0 0 0 0 0  
2/27/2004 35 F Y 2 2 2 0 6 4 2  
2/27/2004 36 B N 1 0 1 1 3 2 1  
2/27/2004 37 F N 0 1 0 2 3 0 3  
2/27/2004 38 M N 0 1 2 1 4 2 2  
2/27/2004 39 B N 2 0 3 0 5 5 0  
2/27/2004 40 M N 0 0 1 0 1 1 0  
2/27/2004 41 C  1 1 3 0 5 4 1  
2/27/2004 42 B N 0 0 1 0 1 1 0  
2/27/2004 43 B Y 3 1 2 0 6 5 1  
2/27/2004 44 C  3 1 0 0 4 3 1  
2/27/2004 45 B N 2 0 4 0 6 6 0  
2/27/2004 46 F Y 0 1 4 0 5 4 1  
2/27/2004 47 F N 0 0 1 0 1 1 0  
2/27/2004 48 B N 0 0 1 0 1 1 0  
2/27/2004 49 F N 0 1 1 1 3 1 2  
2/27/2004 50 C  1 0 1 1 3 2 1  

 



45 
 
 

 

 

LITERATURE CITED 

 
Addison, J. T. (1995). Influence of behavioural interactions on lobster distribution and 

abundance as inferred from pot-caught samples. ICES Marine Science Symposia 

199, 294-300. 

 

Addison, J. T., and Bannister, R. C. A. (1998). Quantifying potential impacts of 

behavioral factors on crustacean stock monitoring and assessment: modeling and 

experimental approaches. In ‘Proceedings of the North Pacific Symposium on 

Invertebrate Stock Assessment and Management’. Canadian Special Publication 

of Fisheries and Aquatic Sciences 125. (Eds G. S. Jamieson and A. Campbell.) 

pp. 167–177. (NRC Research Press: Ottawa.) 

 

Bentley, N., Breen, P. A., Kim, S. W., and Starr, P. J. (2005). Can additional abundance 

indices improve harvest control rules for New Zealand rock lobster (Jasus 

edwardsii) fisheries? New Zealand Journal of Marine and Freshwater Research 

39, 629-644. 

 

Caputi, N., and Brown, R. S. (1986). Relationship between indices of juvenile abundance 

and recruitment in the western rock lobster (Panulirus cygnus) fishery. Canadian 

Journal of Fisheries and Aquatic Sciences 43, 2131-2139. 

 

Caputi, N., Brown, R. S., and Phillips, B. F. (1995). Predicting catches of the western 

rock lobster (Panulirus cygnus) based on indices of puerulus and juvenile 

abundance. ICES Marine Science Symposia 199, 287-293. 

 



46 
 
 

Cruz, R., Diaz, E., Baez, M., and Adriano, R. (2001). Variability in recruitment of 

multiple life stages of the Caribbean spiny lobster, Panulirus argus, in the Gulf of 

Batabano, Cuba. Marine and Freshwater Research 52, 1263-1270. 

 

Edgington, E. S. (1995). 'Randomization Tests.' (Marcel Dekker, Inc.: New York.)  

 

Freeman, M. F., and Tukey, J. W. (1950). Transformations related to the angular and the 

square root. The Annals of Mathematical Statistics 21, 607-611. 

 

Frusher, S. (1997). ‘Update to the July 1997 Rock Lobster Stock Assessment Report.’ 

(Department of Primary Industry and Fisheries: Hobart.) 39. 

 

Frusher, S. D., and Hoenig, J. M. (2001). Impact of lobster size on selectivity of traps for 

southern rock lobster (Jasus edwardsii). Canadian Journal of Fisheries and 

Aquatic Sciences 58, 2482-2489. 

 

Frusher, S., Hoenig, J. M., and Gardner, C. (2003). Have changes in selectivity masked 

recruitment declines in crustacean trap fisheries? Fisheries Research 65, 467-474. 

 

Frusher, S. D., Kennedy, R. B., and Gibson, I. D. (1998). Preliminary estimates of 

exploitation rates in the Tasmanian rock lobster (Jasus edwardsii) fishery using 

the change-in-ratio and index-removal techniques with tag-recapture data. In 

‘Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment 

and Management’. Canadian Special Publication of Fisheries and Aquatic 

Sciences 125. (Eds G. S. Jamieson and A. Campbell.) pp. 63-71. (NRC Research 

Press: Ottawa.) 



47 
 
 

Green, N. (2002). Evaluating lobster catchability using remote video and the implications 

for density estimates obtained from trapping surveys for a southern rock lobster 

Jasus edwardsii population. BSc (Hons) Thesis, University of Tasmania, Hobart, 

Australia. 

 

Heydorn, A. E. F. (1969). ‘The South Atlantic Rock Lobster Jasus tristani at Vema 

Seamount, Gough Island and Tristan da Cunha.’ (Republic of South Africa 

Department of Industries: Cape Town.) 

 

Jernakoff, P., and Phillips, B. F. (1988). Effect of a baited trap on the foraging 

movements of juvenile Western rock lobsters, Panulirus cygnus George. 

Australian Journal of Marine and Freshwater Research 39, 185-192. 

 

Jury, S. H., Howell, H., D.F., O. G., and Watson, W. H. (2001). Lobster trap video: in 

situ video surveillance of the behaviour of Homarus americanus in and around 

traps. Marine and Freshwater Research 52, 1125-1132. 

 

Karnofsky, E. B., and Price, H. J. (1989). Behavioural response of the lobster Homarus 

americanus to traps. Canadian Journal of Fisheries and Aquatic Sciences 46, 

1625-1632. 

 

MacDiarmid, A. B. (1989). Size at onset of maturity and size-dependent reproductive 

output of female and male spiny lobsters Jasus edwardsii (Hutton)(Decapoda, 

Palinuridae) in Northern New Zealand. Journal of Experimental Marine Biology 

and Ecology 127, 229-243. 

 

MacDiarmid, A. B., Hickey, B., and Maller, R. A. (1991). Daily movement patterns of 

the spiny lobster Jasus edwardsii (Hutton) on a shallow reef in northern New 

Zealand. Journal of Experimental Marine Biology and Ecology 147, 185-205. 

 



48 
 
 

MacDiarmid, A. B., and Butler, M. J. (1999). Sperm economy and limitation in spiny 

lobsters. Behavioural Ecology and Sociobiology 46, 14-24. 

 

Miller, R. J. (1989). Catchability of American lobsters (Homarus americanus) and rock 

crabs (Cancer irroratus) by traps. Canadian Journal of Fisheries and Aquatic 

Sciences 46, 1652-1657. 

 

Miller, R. J. (1990). Effectiveness of crab and lobster traps. Canadian Journal of 

Fisheries and Aquatic Sciences 47, 1228-1251. 

 

Miller, R. J., and Addison, J. T. (1995). Trapping interactions of crabs and American 

lobster in laboratory tanks. Canadian Journal of Fisheries and Aquatic Sciences 

52, 315-324. 

 

Pollock, D. E., and Beyers, C. J. De. B. (1979). Trap selectivity and seasonal catchability 

of Rock Lobster Jasus lalandii at Robben Island sanctuary, near Cape Town. 

Fisheries Bulletin of South Africa 12, 75-79. 

 

Richards, R. A., Cobb, J. S., and Fogarty, M. J. (1983). Effects of Behavioral interactions 

on the catchability of American Lobster, Homarus americanus, and two species 

of Cancer crab. Fishery Bulletin 81, 51-60. 

 

Smith, G. F. M. (1944). The catchability of lobsters. Journal of the Fisheries Research 

Board of Canada 6, 291-301. 

 

Smith, S. J., and Tremblay, M. J. (2003). Fishery-independent trap surveys of lobsters 

(Homarus americanus): design considerations. Fisheries Research 62, 65-75. 



49 
 
 

Srisurichan, S., Caputi, N., and Cross, J. (2005). Impact of lunar cycle and swell on the 

daily catch rate of western rock lobster (Panulirus cygnus) using time series 

modelling. New Zealand Journal of Marine and Freshwater Research 39, 749-

764. 

 

Tremblay, M. J., and Smith, S. J. (2001). Lobster (Homarus americanus) catchability in 

different habitats in late spring and early fall. Marine and Freshwater Research 

52, 1321-1331. 

 

Underwood, A. J. (1997). ‘Experiments in Ecology: Their Logical Design and 

Interpretation using Analysis of Variance.’ (Cambridge University Press: 

Cambridge, New York.)  

 

Winstanley, R. (1977). Biology of the Southern Rock Lobster. In 'The Victorian Southern 

Rock Lobster Fishery: Seminar Papers'. Portland, Victoria (Commercial Fisheries 

section, Fisheries and Wildlife Division, Ministry for Conservation, Victoria, 

Melbourne) 

 

Zar, J. H. (1996). 'Biostatistical Analysis.' (Prentice-Hall: Upper Saddle River, N.J.)  

 

Ziegler, P. E., Johnson, C. R., Frusher, S., and Gardner, C. (2002). Catchability of the 

southern rock lobster Jasus edwardsii.  II. Effects of size. Marine and Freshwater 

Research 53, 1149-1159. 

 

Ziegler, P. E., Haddon, M., Frusher, S. D., and Johnson, C. R. (2004). Modelling seasonal 

catchability of the southern rock lobster Jasus edwardsii by water temperature, 

moulting, and mating. Marine Biology 145, 179-190. 



50 
 
 

 

 

TABLE 1.1 

One-way ANOVA tables for comparisons of number of small lobsters captured among 

treatments in spring and summer.  Counts were transformed prior to comparison as 

detailed in the text.  (a) Total of all (sexes combined) small animals caught, (b) small 

females caught, (c) small males caught.  When significant differences were found 

between treatment means in ANOVA, Tukey’s multiple comparison test was used to 

identify which treatments differed significantly. 

 

 

(a) 

Sexes pooled 

Degrees of 

freedom 

 

SS 

Mean 

square 

 

F-value 

 

P > F 

Treatments that 

differ 

Spring:       

Treatment 3 2.9726 0.9909 0.70 0.5522 NA 

Error 190 268.3769 1.4125    

Total 193 271.3494     

Summer:       

Treatment 3 14.5105 4.8368 3.33 0. 0230 Control: 

Large-female 

Error 95 138.1843 1.4546    

Total 98 152.6949     
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(b) 

Small females 

Degrees of 

freedom 

 

SS 

Mean 

square 

 

F-value 

 

P > F 

Treatments that 

differ 

Spring:       

Treatment 3 2.3341 0.7780 0.76 0.5161 NA 

Error 190 193.7500 1.0197    

Total 193 196.0841     

Summer:       

Treatment 3 9.1668 3.0556 3.28 0.0242 Control: Large-

female  

Error 95 88.4149 0.9307    

Total 98 97.5817     

 

(c) 

Small males 

Degrees of 

freedom 

 

SS 

Mean 

square 

 

F-value 

 

P > F 

Treatments that 

differ 

Spring:       

Treatment 3 0.8944 0.2981 0.43 0.7298 NA 

Error 190 130.8999 0.6889    

Total 193 131.7943     

Summer:       

Treatment 3 3.0026 1.0009 1.19 0.3180 NA 

Error 95 79.9399 0.8415    

Total 98 82.9425     
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TABLE 1.2 

F-values and P-values from one-way ANOVA comparisons of transformed counts of 

small lobsters captured among treatments in spring and summer when traps with zero 

catches were included.  (a) Total of all (sexes combined) small animals caught, (b) small 

females caught, (c) small males caught.  All comparisons were not significant. 

 

 F-value P > F 

(a)  Sexes pooled   

Spring 0.93 0.4294 

Summer 1.99 0.1193 

(b)  Small females   

Spring 0.94 0.4198 

Summer 2.18 0.0941 

(c)  Small males   

Spring 0.57 0.6349 

Summer 0.82 0.4870 
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TABLE 1.3 

Degrees of freedom, F values, and P values from One-way ANOVA comparisons 

between treatments for: (a) total number of small lobsters captured, (b) number of small 

females captured, and (c) number of small males captured during different moon phases 

during spring sampling (November);  “n” denotes the number of trap-hauls included in 

the comparison.  Counts were transformed prior to comparison as detailed in the text.  All 

comparisons were not significant. 

 

 

 

Comparison 

 

n 

Total degrees of 

freedom 

 

F value 

 

P > F 

(a) Sexes combined 194 193 0.11 0.7350 

(b) Small females 194 193 0.65 0.4229 

(c) Small males 194 193 2.94 0.0882 
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TABLE 1.4 

Treatment means for counts of small lobsters caught in traps for spring and summer 

trials; Standard error of the mean (SEM) is in parentheses; “n” denotes number of traps in 

the sample.  Sign of the difference of each treatment mean from the control mean; value 

of the difference in parentheses (i.e., control - treatment).   

 

 Mean counts (SEM) Sign of difference 

(value of difference) 

Treatment Spring Summer Spring Summer 

Control 1.320 (0.155) 

n = 100 

1.604 (0.254) 

n = 48 

NA 

 

NA 

 

Biomass 1.156 (0.216) 

n = 32 

0.900 (0.261) 

n = 20 

+ 

(0.0645) 

+ 

(0.7042) 

Female 1.206 (0.245) 

n = 34 

0.4706 (0.212) 

n = 17 

+ 

(0.1355) 

+ 

(1.134) 

Male 0.9286 (0.272) 

n = 28 

1.500 (0.572) 

n = 14 

+ 

(0.3784) 

+ 

(0.1042) 
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FIGURE 1.1 

Size-frequency distributions and sex ratios (male: female) of lobsters caught by treatment 

for spring (November) and summer (February) samples.  Female size frequencies are 

gray bars; male size frequencies are black-outlined bars; and overall (sexes combined) 

size frequencies appear as solid lines.  Counts were standardized to 100 successful trap 

hauls to facilitate comparisons;  “n” indicates the number of animals each distribution 

represents, before standardization.   
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FIGURE 1.2 

Untransformed mean catch rates of small lobsters for each treatment compared to those 

of control traps for spring (November) and summer (February) samples; lobsters caught 

are separated by sex; error bars are one standard error of the mean.  Control catches are 

repeated for each treatment to facilitate comparisons.  The circle indicates the only 

instance where the mean of a treatment catch was greater than that of the control.  

Abbreviations above the bars differentiate controls (C) from the other treatments (large 

female-F, large male-M, biomass control-B).  Subgroups are small females (♀), and 

small males (♂) captured.  “n” indicates the number of trap-hauls included for each 

treatment after traps with zero catches, dead or injured lobsters, or escaped seeds were 

eliminated; total number of trap-hauls performed is given in parentheses.  Not shown: 

controls: spring n = 101 (117), summer n = 48 (59).    



58 
 
 

 

 

 

 

 

 

 

 

 

 

 

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

S
m

al
l l

ob
st

er
 c

au
gh

t i
n 

ea
ch

 tr
ea

tm
en

t b
y 

se
x

Tr
ea

tm
en

t
S

pr
in

g
S

pr
in

g
S

um
m

er
S

um
m

er
Mean catch/ trap

M
al

e
(1

 la
rg

e 
m

al
e)

B
io

m
as

s
(2

 s
m

al
l f

em
al

es
)

Fe
m

al
e

(1
 la

rg
e 

fe
m

al
e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

C

C
C

F
M

C

F
C

M

C
B

B

C
C

C

C
C

C

F

M

F

M
B

B

n 
= 

32
 (6

0)
n 

= 
34

 (5
9)

n 
= 

28
 (5

9)
n 

= 
17

 (3
0)

n 
= 

14
 (3

0)
n 

= 
20

 (3
0)

M
al

e
(1

 la
rg

e 
m

al
e)

B
io

m
as

s
(2

 s
m

al
l f

em
al

es
)

Fe
m

al
e

(1
 la

rg
e 

fe
m

al
e)

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

♀
♂

S
m

al
l l

ob
st

er
 c

au
gh

t i
n 

ea
ch

 tr
ea

tm
en

t b
y 

se
x

Tr
ea

tm
en

t
S

pr
in

g
S

pr
in

g
S

um
m

er
S

um
m

er
Mean catch/ trap

M
al

e
(1

 la
rg

e 
m

al
e)

B
io

m
as

s
(2

 s
m

al
l f

em
al

es
)

Fe
m

al
e

(1
 la

rg
e 

fe
m

al
e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

C

C
C

F
M

C

F
C

M

C
B

B

C
C

C

C
C

C

F

M

F

M
B

B

n 
= 

32
 (6

0)
n 

= 
34

 (5
9)

n 
= 

28
 (5

9)
n 

= 
17

 (3
0)

n 
= 

14
 (3

0)
n 

= 
20

 (3
0)

M
al

e
(1

 la
rg

e 
m

al
e)

B
io

m
as

s
(2

 s
m

al
l f

em
al

es
)

Fe
m

al
e

(1
 la

rg
e 

fe
m

al
e)



59 
 
 

 

 

FIGURE 1.3 

Cumulative distribution of probabilities for a one-tailed test with Ho: control mean catch 

= treatment mean catch verses the alternative Ha: control mean catch > treatment mean 

catch (n = 6).  Solid line: binomial probabilities; dashed line: probabilities obtained by 

randomization.  Dotted line indicates α = 0.05.    
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FIGURE 1.4 

Cumulative distribution of probabilities for a one-tailed test with Ho: control mean catch 

= treatment mean catch verses the alternative Ha: control mean catch > treatment mean 

catch (n = 12).  Solid line: binomial probabilities; dashed line: probabilities obtained by 

randomization.  Dotted line indicates α = 0.05.    
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Chapter 2 

 

Evaluation of a multi-year index-removal abundance estimator,  

with application to a Tasmanian rock lobster fishery 
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ABSTRACT 

 

The index-removal (IR) method provides estimates of abundance, exploitation 
rate and survey catchability based on the change in catch rate between pre- and post-
harvest surveys.  However, model estimates often demonstrate poor precision.  A 
multiple-year IR model (1qIR) was developed to improve the precision of single-year 
IR estimates.  Both models were applied to simulated data to compare model 
performance over a range of exploitation rates, and to test 1qIR model robustness to 
failure of the assumption of constant catchability over all years.  Both models were then 
applied to data from a southern rock lobster fishery in Tasmania, Australia.  The 1qIR 
model consistently outperformed the single-year model in all chosen performance 
criteria using simulated data and data from the rock lobster fishery.  Bias, standard 
deviation, and the square-root of the mean squared error were lower for the new model 
compared to the single-year model, and the 1qIR model produced useful results a 
greater proportion of the time than did the annual model.  The performance of the 1qIR 
model continued to improve as additional years were added to the dataset.  When the 
survey catchability coefficient varied in 1 of 5 years, the 1qIR model was robust to 
failure of the assumption of constant catchability among years until a 50% change in 
catchabilities occurred.  When applied to rock lobster fishery data, 1qIR estimates were 
less variable than single-year model estimates and provided reasonable estimates of 
population abundance, survey catchability coefficient, and exploitation rate.  Diagnostic 
tests to evaluate model estimates of exploitation rate were described and applied to 
model estimates for parameters of the rock lobster fishery.  The 1qIR model estimates 
performed well in diagnostic plots, but results for single-year model were poor.  The 
commercial catchability coefficient was also estimated based on model exploitation rate 
estimates and known fishing effort; 1qIR estimates appeared reasonable, and ranged 
from 3.708 x 10-5 to 3.791 x 10-5.  The 1qIR model offers a useful method to estimate 
abundance and exploitation rate in many situations when estimates from the single-year 
model prove too variable to be useful.     
 
 

Keywords:  Abundance estimation; Exploitation rate; Catchability coefficient; Southern 

rock lobster; Jasus edwardsii 
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1.  INTRODUCTION 

 

The index-removal (IR) method is a simple model that estimates abundance 

based on the decline in catch rate of a survey index due to the removal of a relatively 

large portion of the population.  It requires a survey index of the population before and 

after a known removal, and assumes a closed population except for the known removal 

(i.e., no recruitment, immigration or emigration occurs, and the time between surveys is 

short enough to assume that no natural mortality takes place).  In fishery applications 

(snow crab: Dawe et al. 1993, Chen et al. 1998b; sea scallops: southern rock lobster: 

Frusher et al. 1998; Gedamke et al. 2005) a commercial fishery is usually the source of 

the removal.  The method is attractive because it does not require tagging, it can 

produce an abundance (or exploitation rate) estimate in only one season, and it does not 

require a differential in harvest rates among identified groups (e.g., by sex or life stage), 

as does the closely-related change-in-ratio method.   

The IR method was first introduced by Petrides (1949), and it remains a 

potentially important estimation method because it requires data that may be already 

collected by management agencies (Dawe et al., 1993).  Use of the method has been 

suggested as a cross-check of estimates from other methods (Eberhardt, 1982; Dawe et 

al., 1993).   

Index-removal has seldom been applied because model estimates often have 

poor precision, but recent work has demonstrated that careful survey design can 
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substantially improve the precision of model estimates.  Dawe et al. (1993) speculated 

that the model has not received much use in fisheries either because of the cost of the 

required surveys or because of a lack of awareness of the method among fisheries 

scientists.  Others, however, have pointed out that model estimates suffer from a lack of 

precision (Routledge, 1989; Roseberry and Woolfe, 1991).  Routledge (1989) suggested 

that wide confidence intervals were due to low trap efficiency.  Eberhardt (1982) found 

that precision was poor when removals or survey samples were small, but that model 

performance was poorest when removals were small.  Chen et al. (1998b) also reported 

poor performance of the model when sampling locations were randomized 

independently for each survey.  However, they found substantial improvement in the 

precision of IR estimates with both simulated data and actual survey data when the 

same sampling locations were used for both surveys.  By occupying the same stations, 

they introduced a positive correlation between the pre- and post-harvest survey catches, 

and subsequently accounted for more of the variation in their survey indices than if both 

surveys had been randomized independently.  Chen et al. (1998b) concluded that with 

careful survey design, the model may be very useful for assessing invertebrate stocks.   

The goal of this work was to further improve the precision of the IR method by 

generalizing the approach to include multiple years of data.  We investigated the 

performance of both the single-year model and the new, multiple-year model (hereafter, 

the “annual” and “1qIR” models, respectively) by Monte Carlo simulation over a range 

of exploitation rates, and examined the robustness of the 1qIR model to a violation of 

the model assumption of constant catchability.  We then applied the annual and 1qIR 
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models to data from a southern rock lobster (Jasus edwardsii) fishery in Tasmania, 

Australia.    

 

2.  MODEL DEVELOPMENT AND EVALUATION 

 

2.1 The annual index-removal method 

 

The annual model requires that an index of the population size be obtained from 

a survey before and after the removal and assumes that the survey index is proportional 

to abundance (Hoenig and Pollock, 1998).  Thus,  

qfNIΕ =)(           (1) 

where E denotes expectation, I = survey catch (obtained from f units of randomly-

placed sampling effort), N = population size, and q, the “catchability coefficient,” is the 

constant of proportionality that relates the survey catch to N.  It is assumed that the 

survey does not deplete the population, i.e., the change in abundance due to survey 

activities is negligible.   

In the annual model, the ratio of the expected values of the survey catches per 

unit effort before and after the removal, R, is equal to the ratio of population sizes 

before, N, and after, N-R, the removal (Hoenig and Pollock, 1998): 

RN
N

RNq
qN

fIE
fIE

−
=

−
=

)()(
)(

22

11        (2) 
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where the subscripts denote time (1 = before the fishery removal, 2 = after).  The pre- 

and post-fishery q’s are assumed equal, and drop out of the equation.  Likewise, if f1  = 

f2, the survey effort drops out.  Eq. (2) can be solved for the population size:   

)/(//
/ˆ

2121

1

2211

11

ffII
RI

fIfI
fRI

N
−

=
−

=       (3) 

where “^” denotes an estimate.  Estimates can also be made of the survey catchability 

coefficient, q, and exploitation rate (fraction of the population harvested), u: 
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∧
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      (5) 

Note that q is population and gear specific and is not directly comparable among stocks 

(Dawe et al., 1993).  Also, it is not necessary to know the magnitude of the removal to 

estimate u.  When the data come from the exponential family of distributions, the 

estimates from (3), (4) and (5) can be shown to be maximum likelihood estimates 

(Davidson and Solomon (1974), as referenced by Brownie et al. (1985)).  Estimates are 

made separately for each year of data collected.  Assume that the catch in survey j, is a 

Poisson random variable, Ij ~ P (qNjfj), where j =1 or 2.  The likelihood, Λ, for one year 

of pre- and post-harvest survey data is represented as: 

∏
=

−

=Λ
2

1 !
)(

j j

fqNI
jj

I
efqN jjj

        (6) 

where N2 = N1 – R, with other symbols as before.  Note that the choice of the most 

appropriate probability density distribution should be made by an examination of the 
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catch data.  The Poisson distribution is used here for demonstration, and because it has 

been used in earlier work.   

 

2.2 The multiple-year index-removal model (“1qIR”) 

 

Assume the catchability coefficient is a constant from survey to survey and from 

year to year.  Again assume the survey catch is a Poisson random variable, I ij, where i = 

year for i = 1, 2,…, n, and j = 1, 2.  We can analyze all data simultaneously.  The 

likelihood, Λ, is:    

∏∏
= =

−

=Λ
n

i j ij

fqNI
ijij

I
efqN ijijij

1

2

1 !
)(

       (7) 

with Ni2 = Ni1 – Ri, and Ri = removal in year i.  

 

2.3 Simulation design 

2.3.1.  Model performance when catchability is constant 

 To compare the performance of the two models, survey data were generated by 

Monte Carlo simulation at three levels of exploitation rate, where 10%, 30% or 50% of 

the initial population was harvested each year.  Conditions were ideal for this 

comparison, i.e., the assumption of constant catchability was met and q1 = q2 = … = qn 

for all n years.  Yearly abundance was constant for all simulations, and yearly removals 

were constant for all years within each exploitation rate scenario.  Survey effort (f) was 

assumed constant over all surveys in all years and, for convenience, set equal to 1.  For 
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each survey, random catch data were generated with the assumption that catches are 

distributed according to a Poisson distribution: 

Iij  ~ Poisson(qiNij)  ,  i = 1, 2, …, n  ,  j = 1, 2  , and  Ni2 = Ni1 - Ri  .  (8) 

The simulation parameters were: 

1) population size prior to removals: N11 = N21 = … = Nn1 = 1,000,000 animals   

 2) catchability: q1 = q2 = … = qn = 0.0001 

 3) removals: R1 = R2 = … = Rn = uNi1    , for u = 0.1 , 0.3, 0.5   

 4) survey effort: f = 1   

 5) number of years of data, n, took on the values 2, 3, or 5. 

Survey data were simulated at least 2000 times for each level of u.  Each model was 

applied to the simulated data and model estimates were compared in terms of bias, 

standard deviation, and square root of the mean squared error (RMSE) as measures of 

model performance.   

When the change in catch rate between surveys is small, unreasonably large 

estimates are expected.  In fact, when the catch is equal in both surveys, the abundance 

estimate of the annual model becomes infinite.  Additionally, if post-harvest survey 

catch rate is greater than that of the pre-harvest survey, the population estimates of the 

annual model will be infeasible (negative).  Similarly, the estimates of the 1qIR model 

may be infinite or negative.  Additionally, 1qIR estimates are made by non-linear 

maximization and may fail to converge.  Consequently, simulations with unreasonably 

large estimates ( ii NN *100ˆ > , for any I), infeasible (negative) estimates, and 

convergence failures were counted and removed prior to calculating statistics from the 
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estimates.  Patterns of model estimates were examined in bivariate plots of all feasible 

abundance estimates against corresponding catchability coefficient estimates.    

All survey data were generated in S-PLUS, and maximum likelihood estimates 

for 1qIR were made with the ‘nlminb’ function (MathSoft, 2000).  The use of 

reasonable starting values appeared to be helpful in stabilizing model convergence.  For 

an initial value of q̂  for all years, we used the maximal estimate based on Eq. (1): 

}  {max
i

i

i
o R

I
q̂ 1=   ,           (9) 

where the subscript o indicates an initial guess.  For initial abundance for all years 

estimated, the mean minimum feasible estimate of abundance was used: 

n

)IR(
N̂ j

ij

n

i
i

i O

∑∑
==

+

=

2

11
1  .         (10) 

 

2.3.2.  Varying catchability-ratio comparison 

 

 To compare the performance of the models when the assumption of constant 

catchability over all years is violated for 1qIR, survey data were again generated by 

Monte Carlo simulation as described above except that, in one year, the catchability 

coefficient was greater than that of the other years.  The catchability ratio (qhigh year/qother 

years; hereafter “q-ratio”) scenarios examined were: 1.2, 1.3, 1.4, 1.5, 1.7, and 2.0; 

exploitation rate was held constant at 0.1, 0.3, or 0.5.  The number of years in each 

simulated dataset was 2, 3 or 5.  In each simulation, survey data were simulated at least 

1,000 times for each q-ratio. 
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 Note that this simulation study favors the annual model because the violation of 

assumption only applies to the 1qIR model.   

 

2.4 Example: southern rock lobster fishery 

2.4.1.  Data collection 

 

 The data used here originated from a rock lobster (Jasus edwardsii) population 

in southern Tasmania, Australia.  Data were collected from two study sites near 

Maatsuyker Island (43.679 oS 146.267 oE ; 43.671 oS  146.205 oE) from 1992 to 2002.  

Survey and fishery-removal data were collected by, and provided courtesy of, the 

Tasmanian Aquaculture and Fisheries Institute (TAFI), in Taroona, Tasmania, 

Australia.  Both survey and fishery data were collected at similar depths (40 to 80 m), 

similar locations (the 7F3 management area) and over the same time period (1992 to 

2001).   

Three fishery-independent surveys were performed each year and commercial 

harvest and effort data were documented for the time periods between the surveys.  

Surveys were performed during the first week of the fishing season (mid-October to 

early November), in mid-season (mid-March), and again during the final weeks of the 

season (mid-July to early September).  The timing of the post-harvest survey varied the 

most because of irregular, early closures of the fishery or to bad weather (Frusher, 

1997).  Analyses were restricted to data that included only the first two surveys each 

year (and the fishery removal that occurred between these surveys), because of concerns 
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the catchability of rock lobsters may change towards the end of the season (Ziegler et 

al., 2003; Ihde et al., 2006).   

 

2.4.2.  Model diagnostics 

 

 Model performance was evaluated on the strength of the relationship between 

estimated exploitation rate ( û ) and the amount of effort (fc; measured by the number of 

trap hauls) expended by the fishery.  Exploitation rate is not directly proportional to 

fishery effort because û  has an asymptote at 1.0 (100% removal).  With no natural 

mortality, 

Feu −−= 1           (11) 

where F is the instantaneous mortality per year due to fishing (based on the Baranov 

catch equation as described by Ricker, 1975).  Natural mortality, M, for Jasus edwardsii 

is believed to be small, as estimates from tagging studies in Tasmania range from 0.10 – 

0.12 yr -1 (Punt and Kennedy, 1997; Frusher and Hoenig, 2003).  Therefore, ignoring M 

appears to be a reasonable approximation.  F can be modeled as qcfc, where qc is the 

catchability coefficient of the commercial fishing gear.  The relationship between 

commercial effort and û can be linearized as:  

cce fqF̂)û(log ==−− 1    .       (12) 

The relationship in Eq. (12), was evaluated by plotting transformed exploitation rate 

estimates against effort for each model.  The y-intercept of the regression line should be 

near the origin, the slope should estimate qc and the R-squared value should be close to 
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unity.  Model estimates were evaluated by these criteria.  The estimated y-intercept of 

each model was tested with a t-test (as described in Zar 1996) to determine if each 

differed significantly from zero.  Additionally, model estimates of qc were compared to 

that predicted from the Baranov continuous catch equation (modified from Ricker, 

1975), which includes natural mortality: 

)1(ˆ )( cc fqM

cc

cc e
Mfq

fq
u −−−

+
= .       (13) 

For these computations, M was assumed to be 0.12 yr-1 (Frusher and Hoenig, 2003).  

The catch equation estimate of qc, (Eq. 13), was calculated by minimizing the sum of 

squares using the Excel ‘solver’ function (Microsoft, 1999).     

 

2.4.3.  Accommodating problematic data 

 

 The annual model produces problematic results if pre- and post-harvest survey 

indices of abundance are close, or if the post-harvest survey index exceeds the pre-

harvest index.  However, the 1qIR method can be used to obtain a more reasonable 

estimate.  A two-step process can be used.  First, obtain an estimate of q from the 1qIR 

model fitted to the other years.  Then, an estimate for the problem year can be obtained 

as either: 
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Eq. (14a) or (14b) might be used if one suspects that survey 1 or 2 is valid, respectively, 

and the other survey is invalid due to a change in catchability.  Eq. (14c) might be used 

if both surveys are believed valid, with the small or positive change in catch rate being 

due solely to sampling error.  We suggest Eq. (14c) be used in any multiyear study to 

make estimates for any year in which the change in catch rate is small.  Additionally, a 

large increase (or decrease) in estimated abundance from one year to the next ought to 

reflect strong (or weak) recruitment; if size composition data are available, this 

hypothesis may be evaluated.  If the change in abundance does not appear consistent 

with recruitment information from size composition data, then Eq. (14) might be used.   
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3.  RESULTS AND DISCUSSION 

 

3.1 Simulation results 

3.1.1.  Model performance when catchability is constant 

 

 When there was no violation of the assumption of constant catchability, 1qIR 

estimates always had lower bias, greater precision, and lower root mean squared error 

than annual model estimates, and 1qIR could use a greater percentage of the data than 

could the annual method (Fig. 2.1).  As more years were added to the dataset, 1qIR 

model results continued to improve in all performance measures.     

Biases for abundance estimates of both models were always positive, but were 

consistently lower for 1qIR model estimates than for those of the annual model (Fig. 

2.1a).  Biases for catchability coefficient estimates of both models followed those of 

abundance closely (though without an increase at u = 0.2) (Fig. 2.2).  These results were 

partly a result of our exclusion criteria, because negative abundance (and catchability 

coefficient) estimates were excluded from analysis.  Bias was most severe for both 

models when exploitation rate was low, as would be expected if the removal were not 

large enough to cause a distinct change in the survey catch rate.  Annual model bias for 

abundance increased sharply from exploitation rates of 0.1 to 0.2, and began to drop 

again when exploitation rate reached 0.3.  Although bias was reduced for both models 

when 30% or more of the population was removed, the performance of the annual 
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model remained poor relative to that of the 1qIR model.  Biases of the abundance 

estimates of the annual model remained at least a third of the true abundance or more 

until 40% of the population was removed.  Biases of 1qIR abundance estimates were 

consistently less than half that for the annual model at exploitation rates of 20% or 

more, with only 2 years of data.  Further improvements in bias can be expected if 

survey q or f is increased, because maximum likelihood estimates are asymptotically 

unbiased.  This expectation was verified in simulation (Fig. 2.3).  When two years of 

survey data were simulated with a catchability coefficient ten times that of all other 

simulations (q = 0.001), bias was 5% or less at an exploitation rate of only 0.20.    

Standard deviation and root mean squared error were always lower for 1qIR 

estimates than for annual model estimates.   The percent standard deviation and percent 

RMSE of 1qIR estimates were 43% to 70% lower than annual model estimates when 

20% or more of the population was removed, with only 2 years of data (Fig. 2.1b-c).  

The 1qIR model estimates improved in all performance measures as more years 

of data were added, but annual model performance was unchanged, because annual 

model estimates are made separately for each year of data, and all years are simulated 

with the same parameters.  With 3 years of data, the improvement of 1qIR estimates 

over that of the annual method was evident for all performance measures even when 

only 10% of the population was removed (Fig. 2.1).  The greatest improvements in 

performance for the 1qIR model over that of the annual model were seen with 5 years of 

data at moderate exploitation rate (30%), when 1qIR estimates of bias, standard 

deviation, and RMSE were 10%, 13% and 13% of the corresponding annual model 

estimates, respectively.       
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The 1qIR model produced useful estimates more often than the annual model 

did (Fig. 2.1d).  The relatively low estimates of bias, standard deviation, and RMSE of 

the annual model at u = 0.1, was an artifact of excluding a quarter of the estimates.  All 

other performance indicators for the annual model deteriorated at higher exploitation 

rates (u = 0.2 or 0.3) as more estimates were included.     

Our findings that the annual model performed poorly at low levels of 

exploitation are not new.  Eberhardt (1982) predicted poor precision at low exploitation 

rate when he examined the properties of the annual IR model.  Routledge (1989) also 

reported discouragingly wide confidence intervals when removals were low.   

The imprecision of the annual model is due to a few, very large estimates that 

result when the post-season survey catch is similar to the pre-season survey catch.  

These infrequent, but very large estimates result in a skewed frequency distribution with 

an extremely long right tail (Chen et al., 1995).  It was because of this extremely long 

right tail that Chen et al. (1998a) found the mean and variance to be unreliable 

indicators of the reliability of the model estimates.  In this study, we avoided the 

frequency distributions of N̂  with extremely long right tails reported by Chen et al. 

(1998a) by excluding simulations that produced estimates in excess of 100 times the 

known abundance.  Consequently, we were able to employ statistics based on the mean 

estimate rather than the median.  The problems with the IR methods were not hidden by 

the exclusion of extremely high estimates, however, because problems were accounted 

for in the statistics on the number of rejected estimates.  Also, the exclusion criterion 

was applied to both the annual and the 1qIR model results.  The 1qIR model performed 
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better than the annual model, both because model estimates had lower bias and mean 

squared error and because 1qIR was able to accommodate more simulated data sets.   

The mean abundance estimate was plotted against the mean catchability estimate 

for each five-year simulation performed, for both models (Fig. 2.4).  The resulting 

bivariate plots demonstrated a substantial improvement in the precision of 1qIR 

estimates (n = 10,000) compared to those of the annual model (n = 9,673).  Though 

some 1qIR model estimates of abundance were unreasonably large, all the estimates of 

this model were positive, while a large portion of annual model estimates were negative 

(infeasible), and more than 3% of annual estimates were infinite and had to be removed 

before calculating the mean estimate for each simulation.  Though the precision of the 

estimates of both models improved substantially in simulations that had higher 

exploitation rates (Fig 2.4), mean abundance estimates of the 1qIR model were 

substantially less variable, and catchability coefficient estimates were moderately less 

variable than were similar estimates of the annual model at all exploitation rates tested. 

 

3.1.2. Violations of the constant catchability assumption 

 

The 1qIR model generally performed much better than the annual model when 

the catchability differed in one of the years analyzed (Figs. 2.5, 2.6, and 2.7).  Relative 

patterns of abundance estimates for annual and 1qIR models were similar whether two 

(Fig. 2.5), three (Fig. 2.6) or five (Fig. 2.7) years were simulated.  However, the most 

clearly defined trends are seen with five years of simulated data.  Consequently, the 

five-year simulation comparison is discussed here.  With five years of data, the 
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estimates for the 1qIR model appeared robust to the violation until a 50% difference 

between catchabilities occurred, and 1qIR could always use a greater portion of the 

simulated data than could the annual model.  In the four years with the same 

catchability (solid lines in Fig. 2.7), bias, standard deviation and root mean squared 

error in the 1qIR model were smaller than those of the annual model.  Predictions for 

the 1qIR model suffered a penalty in bias, standard deviation and RMSE for the year 

that the catchability coefficient differed, but the penalty was generally moderate until 

the difference in catchabilities was 50% or more.  The increased bias and variability in 

1qIR estimates for the high-q year was expected because the catchability coefficient 

estimated for all years was wrong for the year catchability differed.  Even so, the 1qIR 

model generally outperformed the annual model.  With five years of data, the percent 

standard deviation of the annual model was less than that of the 1qIR model only once, 

at the highest level of exploitation rate simulated, when high-q year estimates were 

compared and catchabilities differed by a factor of 2 (Fig. 2.7 Cb).   

Neither model performed well when exploitation level was low (u = 10%; Fig. 

2.7A).  The 1qIR model bias for the four constant-q years never exceeded 18%, and was 

less than half that of annual model bias.  However, the 1qIR model bias of the high-q 

year estimates exceeded that of the annual model when there was a 50% difference in 

catchabilities.  Annual model estimates for the high-q year trended toward worse 

performance as catchability increases at this low exploitation rate, whereas the opposite 

trend was observed for exploitation rates of 30% and 50%.  We suspect the behavior at 

low exploitation rate is due to the extreme nature of the estimates when survey catches 

are similar in magnitude.  With only 10% of the original population removed, there was 
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much overlap in the frequency distributions of the survey catches.  Though this resulted 

in about ¼ of annual estimates being excluded (Fig. 2.7Ad), fewer estimates were 

excluded as catchability increased in the high-q year.  Accordingly, when fewer 

estimates were excluded, a greater number of very high estimates were retained with 

our exclusion criteria.  Thus, the increasing trend in bias coincident with the increasing 

q-ratio for the annual model high-q year is likely an artifact of our exclusion criteria.    

At a moderate exploitation rate (30%) with five years of data (Fig. 2.7B), the 

1qIR model outperformed the annual model until there was a 50% difference in 

catchabilities.  The percent bias of the 1qIR model was always less than 10% of the 

known abundance for the 4 years with the same catchability coefficient (Fig. 2.7Ba).  

Though the bias for the high-q year increased as the q-ratio violation grew more severe, 

the 1qIR model continued to outperform most annual model estimates until there was a 

50% difference in catchabilities.  The 1qIR percent standard deviation was low, and 

always less than half that of the annual model (Fig. 2.7Bb).  1qIR percent RMSE was 

much lower than that of the annual model, until catchability in the high-q year doubled 

the catchability of the other years.  Even then, the only annual model RMSE to 

approximate that of the 1qIR model was from the high-q year (Fig. 2.7Bc).   

 When half the population was removed (Fig. 2.7C) both models generally 

performed well overall.  Both models generally had low bias, while precision and root 

mean squared error improved relative to those estimates made with a 30% exploitation 

rate.  These results were expected, as Eberhardt (1982) predicted satisfactory annual 

model performance when removals were large.  Note that when catchability (and 

subsequently, when qf) was higher, the annual model results improved.  In fact, when q 
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was doubled, annual model percent RMSE was reduced by more than half.  Eberhardt 

(1982) predicted that annual model performance would be unsatisfactory unless the 

proportion of the population seen in the survey (qf) was relatively large.  Accordingly, 

at high exploitation rate, with high q, annual model performance sometimes surpassed 

that of the 1qIR model for the high-q year.       

In all scenarios (Fig. 2.7 A,B,C), the 1qIR model estimates were usable more 

often than were annual model estimates.  The 1qIR model excluded data about two-

thirds less often than did the annual model when only 10% of the population was 

removed (percentages averaged over all years and all q-ratio scenarios were 8.5% and 

23.6%, respectively).  Moreover, the 1qIR model never excluded data when exploitation 

rate was 30% or greater, but the annual model continued to fail a small percentage of 

the time until half of the population was removed (Fig. 2.7d). 

 

3.1.3. Evaluating the Poisson assumption 

  

 The Poisson assumption could result in overly optimistic simulated survey 

variances when survey catches are large (Table 2.1).  Since survey catches were Poisson 

random variables, the coefficient of variation (cv) of the survey catch decreases as the 

mean catch of the surveys increase, and vice versa: 

    
PP

P

P

P

µµ
µ

µ
σ 1cv ===         (15) 
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where σP = standard deviation of survey catch, and µP = mean survey catch.  

Consequently, the variation of simulated surveys could have been unreasonably low for 

data modeled on a potentially aggregated fisheries resource like that of rock lobster.   

A model that assumes a normal distribution can have any cv without regard to 

the size of the mean, but use of a normal assumption introduces at least one more 

parameter to estimate (depending on the assumptions made about the σ parameter).  The 

choice of the best distribution for the model depends on the distribution of the data.  

     

3.2 Results for southern rock lobster example 

3.2.1.  Comparison of model performance 

 

1qIR model predictions were less variable than those of the annual model and 

appeared more reasonable (Fig. 2.8).  The abundance estimate of the annual model for 

1996 was unreasonably high, with abundance seemingly increasing by a factor of six in 

one year and then declining the next year back to the usual level.  The high abundance 

estimate was accompanied by an extremely low estimate of catchability, and an 

exploitation rate less than 10%.  The low exploitation rate is not credible because 

fishing effort in 1996 was not unusually low.  These extreme annual model predictions 

were the result of a relatively poor catch in the pre-harvest survey of similar magnitude 

to the post-harvest survey (Table 2.2).  Though the pre-harvest catch rate of 1996 was 

the lowest observed in the 9-year dataset, similar catch rates were seen in two other 

years (1993, 2000).  Annual model estimates were more reasonable in those years 

because those years also had low post-harvest catch rates.  Extreme estimates are 
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expected when pre- and post-harvest survey catch rates are similar in magnitude, and 

this example illustrates the instability of annual model estimates when this situation 

arises.  In contrast, 1qIR model estimates were less variable overall (Fig. 2.8), and the 

1996 estimate appears reasonable compared to estimates of surrounding years.   

We assumed that the pre-harvest catch rate in 1996 was problematic for use with 

the annual model.  Accordingly, we used 1qIR to estimate a common q for all years 

except 1996, and then applied Eq. 14b to attain replacement estimates for the 

problematic year.  The overall q estimated without the problematic year was slightly 

higher than that estimated using all years with the 1qIR model (Fig. 2.8).  Estimates of 

abundance and exploitation rate, however, were similar to those estimated with 1qIR, 

and appear reasonable.       

Estimates for the 1qIR model suggest that this population was relatively stable, 

and that exploitation rate was very high from 1992 to 1994, but has generally been 

declining since 1994 when the statewide catch was reported to be at its lowest level 

(Frusher et al., 2003).  Similar trends were hard to detect in annual model estimates 

because they were so variable; however, the trends predicted by 1qIR appear 

reasonable.  In 1997, Frusher described this stock as highly exploited, with a biomass of 

only 5% of the virgin biomass, and nearly 90% of the exploited stock composed of new 

recruits.  The next year (1998), the fishery adopted an individual transferable quota 

(ITQ) management system to reduce high exploitation rates statewide.  Frusher et al. 

(2003) report that even before the ITQ system was established, a trend had begun for 

fishers to fish more in winter (after the mid-March survey), in shallower water, and 

away from home ports, to target higher-priced, premium-quality lobsters.  They further 
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suggest that the ITQ system has amplified these trends.  If these trends are real and 

continue until 1998, one would expect the gradual decline described by 1qIR estimates 

from 1994 to 1997 because, as increasingly more effort was being expended after the 

mid-March survey, less exploitation would be accounted for in the model estimates.  

Exploitation rate estimates of the 1qIR model also support the notion that these trends 

have been amplified since ITQ was established.  Exploitation rate estimates of the 

multiple-year model were consistently under 50% from 1998 to 2000, 42% lower than 

the mean exploitation rate of the first 6 years (1992 – 1997).     

T-tests of the intercepts of the regression lines did not differ significantly from 

zero for either model, but diagnostic plots of the regression lines, and the magnitude of 

R2 values revealed that the 1qIR model performed better than the annual model (Fig. 

2.9).  No significant difference was found between the y-intercept and 0 for either 

model (1qIR: P > |t| = 0.6593; annual: P > |t| = 0.2459), so a model could not be chosen 

based on these test statistics.  However, the 1qIR model had a y-intercept for the 

regression line closer to the origin  (-0.08) than did the annual model estimate (-0.47).  

And commercial fishing effort explained much more of the variation of 1qIR estimates 

(R2 = 0.8345) than it did for annual model estimates (R2 = 0.6602).  The slope estimate 

of the commercial catchability coefficient for the 1qIR model ( cq̂  = 3.791 x 10-5 ) was 

similar to that derived from the catch equation ( cq̂ = 3.708 x 10-5 ).  The 1qIR estimate 

of qc only differed from the catch equation estimate by 2%, whereas the slope estimate 

of qc from the annual model (5.166 x 10-5) differed by 39%. 

 



84 
 
 

 

3.2.2. The assumption of constant catchability for rock lobster data 

 

Recent work has suggested that the catchability of Jasus edwardsii is complex 

and varies seasonally with both sex and size of the lobster (Ziegler et al., 2002; Ihde et 

al., 2006), and that changes in catchability are important to take into account when 

modeling life history parameters of this species (Frusher and Hoenig, 2003).  Those 

studies, however, all concerned more temperate populations of this species.  Ziegler et 

al. (2003) presented evidence that the catchability for the southern population described 

here is typically stable from November to March.  Thus, our use of IR models, which 

assume constant catchability between the first (November) and second (March) surveys, 

appears justified in this region of Tasmania.    
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4. CONCLUSION 

 

 The 1qIR model consistently outperformed the annual method when all 

assumptions were met, and was robust to violations of the assumption that the 

catchability coefficient remains constant among years until a 50% change in 

catchabilities occurred.  Model performance of the 1qIR model consistently improved 

as more years were added to the dataset.  Estimates of the 1qIR model were much less 

variable than annual model estimates, both in simulation and in application to data from 

a southern rock lobster fishery in Tasmania, Australia.  The 1qIR model offers a useful 

method to estimate abundance and exploitation rate in many situations where annual 

model estimates prove too variable to be useful.  However, if the constant catchability 

assumption is thought to be violated and the difference between catchabilities is thought 

to exceed 50%, or if both exploitation rate and qf are high, simulation results suggest 

that use of the annual model may be preferable.      
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TABLE 2.1 

Ranges of the coefficient of variation observed for the pre-harvest survey and the post-

harvest survey for each simulation performed, and the number of simulations (n) 

performed for each scenario.  (Section numbers) correspond to descriptions of survey 

parameters on which each simulation was based.    

 

Simulation n Pre-harvest survey cv Post-harvest survey cv 

Exploitation rate variation 

(Section 2.3.1.) 

   

1qIR model:   2 years 2,000 9.9% - 10.0% 10.4% - 13.9% 

       3 years 2,000 9.9% - 10.1% 10.4% - 14.1% 

Both models: 5 years 2,000 9.8% - 10.1% 10.4% - 14.4% 

Catchability varies 

(Section 2.3.2.) 

   

1qIR model:     u = 0.1 1,000 9.8% - 22.7% 10.3% - 23.0% 

           u = 0.3 1,000 9.8% - 22.7% 11.6% - 23.4% 

           u = 0.5 1,000 9.8% - 22.7% 13.8% - 24.0%  

Annual model:  u = 0.1 10,000 10.0% - 22.8% 10.5% - 22.9% 

            u = 0.3 10,000 10.0% - 22.8% 11.9% - 23.4% 

            u = 0.5 10,000 10.0% - 22.8% 14.1% - 24.2% 
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TABLE 2.2 

Survey catch rates, commercial removals, and commercial effort (number of pot-lifts) 

for a southern rock lobster fishery in Tasmania, Australia (management area 7F3), near 

Maatsuyker Island.  The fishing season runs from mid or late October to August or 

September, so the “fished year” spans 2 calendar years.  Scientific surveys were 

conducted the first week of commercial harvest, and again in mid-season (mid March).   

Commercial removal and effort data correspond to time periods between the first 2 

surveys.   

 
 Fished year 

 

 

1992- 

1993 

1993- 

1994 

1994- 

1995 

1995- 

1996 

1996- 

1997 

1997- 

1998 

1998- 

1999 

2000- 

2001 

2001- 

2002 

Pre-harvest 

survey 

1.55 0.86 1.84 1.87 0.85 1.73 2.35 0.90 2.1 

Post-harvest 
survey 

0.39 0.40 0.33 0.90 0.79 0.37 1.48 0.56 1.58 

Removals (kg) 

 

34095 22770 39238 40311 20277 30497 26052 15284 16968 

Effort 

 

38859 25726 34599 31252 20815 29487 18134 15507 11572 
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FIGURE 2.1 

Comparisons of model performance between the annual and 1qIR models when the 

assumption of constant catchability is not violated.  Performance indicators are (a) bias, 

(b) standard deviation, (c) square root of mean squared error (RMSE) of model 

estimates and (d) the percentage of unusable simulations over all years simulated.  

Performance indicators are expressed as a percentage of the known abundance 

(1,000,000), except (d).  Scenarios differ in the exploitation rate (u = 0.1, 0.2, 0.3, 0.4, 

0.5) on the simulated population.  Annual model plots are solid lines with open circles.  

Each annual model scenario represents a weighted mean of usable data from 5 years of 

2000 simulated datasets, because the annual model estimates are made separately for 

each year of data, and all years are simulations generated with the same parameters.  

1qIR plots are for 2 years (dash-dot lines), 3 years (dashed lines), and 5 years (solid 

line).  Each scenario for the 1qIR model represents the mean of usable estimates from 

2000 sets of simulated data.  Dotted lines indicate 10% of actual abundance, and are 

included for reference. 
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FIGURE 2.2 
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Comparison of bias in catchability coefficient estimates of the annual and 1qIR models 

when the assumption of constant catchability is not violated.   Bias is expressed as a 

percentage of the known survey catchability coefficient (0.0001).  Scenarios differ in 

the exploitation rate (u = 0.1, 0.2, 0.3, 0.4, 0.5) on the simulated population.  Annual 

model plots are solid lines with open circles.  Each annual model scenario represents a 

weighted mean of usable data from 5 years of 2000 simulated datasets, because the 

annual model estimates are made separately for each year of data, and all years are 

simulations generated with the same parameters.  1qIR plots are for 2 years (dash-dot 

lines), 3 years (dashed lines), and 5 years (solid line).  Each scenario for the 1qIR model 

represents the mean of usable estimates from 2000 sets of simulated data.  Dotted line 

indicates 10% of actual abundance, and is included for reference. 
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FIGURE 2.3 
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Improvement of model performance when qf product is higher (qf = 0.001) than that of 

other simulations discussed in text.  Comparisons of model performance between the 

annual and 1qIR models when the assumption of constant catchability is not violated.  

Plots are based on two years of simulated data.  Performance indicators are (a) bias, (b) 

standard deviation, (c) root mean squared error (RMSE) of model estimates and (d) the 

percentage of unusable simulations over all years simulated.  Scenarios differ in the 

exploitation rate (u = 0.1, 0.2, 0.3, 0.4, 0.5) on the simulated population.  Each annual 

model scenario (solid lines, open circles) represents a weighted mean of usable data 

from 2000 simulated datasets, because the annual model estimates are made separately 

for each year of data, and all years are simulations generated with the same parameters.  

Each scenario for the 1qIR model (dash-dot lines) represents the mean of usable 

estimates from 2000 sets of simulated data.  Dotted lines indicate 10% of actual 

abundance, and are included for reference. 
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FIGURE 2.4 

Bivariate plots for (A) annual model and (B, C) 1qIR model estimates of abundance and 

catchability coefficient.  Catchability coefficient was constant between surveys and 

among years for the simulated survey data fit to both models.  Each open circle 

represents the mean of five years of data from one simulation (A and C are jittered).  

Infinite estimates were removed prior to the calculation of the mean (necessary only for 

annual model estimates).  2,000 simulations were performed at each exploitation rate 

(u); and, estimates from each exploitation rate simulation are plotted in a separate color.  

The 1qIR model mean estimates were all restricted to the quadrant I (both variables 

were positive), but annual model estimates occurred in all four quadrants.  Dashed line 

is true abundance.  The light blue line in (B) and (C) represents the maximum 1qIR 

estimate made without a convergence error. 
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FIGURE 2.5 

Comparisons of model performance between the annual and 1qIR models with 2 years 

of simulated data.  Performance indicators are abundance estimate: (a) bias, (b) standard 

deviation, (c) square root of mean squared error (RMSE) and (d) the percentage of 

unusable simulations over all years simulated (dash-dot lines).  Performance indicators 

are expressed as a percentage of the known abundance (1,000,000), except (d).  Model 

comparisons are made at three exploitation rates: (A) 10%, (B) 30%, and (C) 50%.  The 

catchability coefficient (q) of one year is higher (dashed line) than that of the other year 

(solid line) in each scenario of simulated data.  The 7 scenarios differed by the ratio of 

catchability coefficients (qhigh year/qother year  = 1.0, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0).  Each 1qIR 

model scenario represents the usable data from 1,000 sets of simulations.  Each line in 

annual model plots represents usable data from 1,000 simulations for each scenario 

simulated.  Dotted lines indicate 0 abundance. 
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FIGURE 2.6 

Comparisons of model performance between the annual and 1qIR models with 3 years 

of simulated data.  Performance indicators are abundance estimate: (a) bias, (b) standard 

deviation, (c) square root of mean squared error (RMSE) and (d) the percentage of 

unusable simulations over all years simulated (dash-dot lines).  Performance indicators 

are expressed as a percentage of the known abundance (1,000,000), except (d).  Model 

comparisons are made at three exploitation rates: (A) 10%, (B) 30%, and (C) 50%.  The 

catchability coefficient (q) of one year is higher (dashed line) than that of the other 2 

years (solid line) in each scenario of simulated data.  The 7 scenarios differed by the 

ratio of catchability coefficients (qhigh year/qother years  = 1.0, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0).  

Each 1qIR model scenario represents the usable data from 1,000 sets of simulations. 

The solid line in 1qIR model plots represents the mean of 2 years of estimates, and the 

dashed line represents one year in which q is higher than in other years.  Annual model 

plots represent usable data from 3,000 simulations for each scenario simulated: solid 

lines are weighted means of up to 2,000 simulations; dashed lines represent up to 1,000 

simulations for each scenario plotted.  Dotted lines indicate 0 abundance. 
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FIGURE 2.7 

Comparisons of model performance between the annual and 1qIR models with 5 years 

of simulated data.  Performance indicators are abundance estimate: (a) bias, (b) standard 

deviation, (c) square root of mean squared error (RMSE) and (d) the percentage of 

unusable simulations over all years simulated (dash-dot lines).  Performance indicators 

are expressed as a percentage of the known abundance (1,000,000), except (d).  Model 

comparisons are made at three exploitation rates: (A) 10%, (B) 30%, and (C) 50%.  The 

catchability coefficient (q) of one year is higher (dashed line) than that of the other 4 

years (solid line) in each scenario of simulated data.  The 7 scenarios differed by the 

ratio of catchability coefficients (qhigh year/qother years  = 1.0, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0).  

Each 1qIR model scenario represents the usable data from 1,000 sets of simulations. 

The solid line in 1qIR model plots represents the mean of 4 years of estimates, and the 

dashed line represents one year in which q is higher than in other years.  Annual model 

plots represent usable data from 50,000 simulations for each scenario simulated: solid 

lines are weighted means of up to 40,000 simulations; dashed lines represent up to 

10,000 simulations for each scenario plotted.  Dotted lines indicate 0 abundance. 
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FIGURE 2.8 
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A comparison of model estimates of (a) abundance, (b) survey gear catchability, and (c) 

exploitation rate for southern rock lobster in southern Tasmania, Australia.  Open 

circles denote the annual model estimates; filled circles are the 1qIR estimates.  The 

open squares indicate replacement estimates from the application of Eq. (14b) to the 

data for 1996. 
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FIGURE 2.9 

Effort (commercial trap hauls)
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Diagnostic plots exploring the relationship between estimated exploitation rate and 

fishing effort in the annual model (open circles, dashed line), and 1qIR model (filled 

circles, solid line).  Y-axis is the quantity that relates exploitation rate (u) to commercial 

effort (measured in the number of trap hauls performed).  The equations for the 

regression lines, and associated R-squared values are annual model: )ˆ1(log ue −− =  

5.166 x 10-5 x effort - 0.4713 (R2 = 0.66); 1qIR model: )ˆ1(log ue −− = 3.791 x 10-5 x 

effort - 0.07801 (R2 = 0.83).   Dotted line extensions to the regression lines are included 

for reference.  Model estimates of commercial catchability coefficient correspond to the 

slopes of the regression lines. 
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Chapter 3 

 

An index-removal abundance estimator that allows for seasonal change in 

catchability, with application to rock lobster 
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ABSTRACT 

The index-removal method provides estimates of abundance, exploitation rate 
and catchability coefficient.  Estimates of the original method had suffered from poor 
precision.  Recent work has improved the precision of model estimates; however, the 
method still includes the strong assumption of constant survey catchability.  This 
assumption is not tenable in many fisheries.  This work introduces a new model, 2qIR, 
that allows catchability to differ between surveys of the same year.  The 2qIR model 
requires that at least two years of data be collected, and that there is some contrast in 
exploitation rates between at least two years of the dataset.  The model also assumes 
that survey-specific catchabilities remain constant among years.  The 2qIR model was 
tested by Monte Carlo simulation, and then applied to fishery data from a southern rock 
lobster (Jasus edwardsii) population in Tasmania.   
 Three types of simulations were performed.  First, the effect of exploitation rate 
(u) on model performance was tested.  Second, performance was tested over a range of 
contrasts in survey catchability.  Third, the effect of increasing the number of years in a 
dataset was examined.     
 The 2qIR model estimates were always accurate and precise when there was 
moderate contrast in exploitation rates between two years of data (i.e., |u1 – u2| was at 
least 0.3), regardless of the degree of contrast between survey catchability coefficients.   
Annual model estimates, however, were only accurate and precise when catchability 
coefficients were the same, or when u was extreme (0.7 or more).  The 2qIR model 
worked well within the tested range of contrasts between survey catchabilities.  
Catchability ratios (q2/q1) tested ranged from 0.1 to 10, but the model worked best at 
catchability ratios greater than 0.3.  In comparison, annual model estimates were only 
accurate and precise in a narrow range of catchability ratios from 0.9 to 1.1.  The 2qIR 
model performance improved slightly when a third year was added to the dataset, but 
performance was similar with three or five years of data.  In all types of simulations, 
2qIR model estimates were useful a greater proportion of the time than were annual 
model estimates.  The 2qIR model produced reasonable results when applied to data 
from a southern rock lobster population in Tasmania.  Parameter estimates of the 2qIR 
model were similar whether model estimates were made using data from surveys 
indices with similar catchabilities, or data from surveys whose survey catchabilities are 
thought to differ.  Both simulation and application results to rock lobster data from 
Tasmania suggest that the 2qIR model can be reliably applied in more situations than 
can the 1qIR or annual models. 
 

Keywords:  Abundance estimation; Exploitation rate; Catchability coefficient; Southern 

rock lobster; Jasus edwardsii 
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INTRODUCTION 

 

 Index-removal (IR) models estimate abundance and survey catchability 

coefficient in a population that experiences a relatively large, known removal.  The 

method requires that a survey index be obtained before and after the removal and 

assumes that the population is closed except for the known removals (i.e., there is no 

recruitment, immigration, or emigration between surveys, and the time between surveys 

is short enough that no natural mortality occurs).  Though the original method 

(hereafter, the “annual model”) is attractive (Dawe et al. 1993), and has been known for 

some time (Petrides 1949), it has received only moderate development (Hoenig and 

Pollock 1998).  This may be because annual model estimates often have poor precision 

(Routledge 1989; Roseberry and Woolfe 1991; Chen et al. 1998a).  Chapter 2 

demonstrated that precision could be improved by simultaneously estimating 

parameters for multiple years of data.  The multiple-year index-removal (“1qIR”) 

model, introduced in Chapter 2, assumes that the catchability coefficient of the survey 

gear remains constant across years and seasons.  However, in practice, survey 

catchability may be affected seasonally by a variety of factors such as changes in water 

temperature (Paloheimo 1963), life history stage (Ziegler et al. 2002) or fishing gear.  If 

catchability varies seasonally, both the annual model and 1qIR will provide biased 

results, with a decrease in catchability over the season causing a negative bias in the 

population estimate and a positive bias in the exploitation estimate. 
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 In this paper we develop and test a multiple-year IR model, the 2qIR model, 

which allows for catchability to vary by season.  The 2qIR model can be used when: 1) 

pre- and post-harvest survey indices of abundance have been obtained in at least two 

years, 2) exploitation rate varies among years, and 3) the seasonal catchability 

coefficients remain constant across years.  We use simulation to evaluate the 

performance of the 2qIR model.  We then apply the model to a rock lobster fishery on 

the South coast of Tasmania, Australia.        
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METHODS 

 
Model Development 

 Annual and 1qIR models.—Both the annual and the 1qIR models have been 

previously described, and are only briefly reviewed here.  The annual model was 

described by Petrides (1949), and its performance was evaluated by Eberhardt (1982).  

The 1qIR model was described and evaluated in Chapter 2.   

 Assume catch Ij in survey j (for j = 1,2) is distributed as a Poisson random 

variable, Ij ~ P (λj), where the mean λj is modeled as λj = qNjfj, where Nj is the 

population size at the time of survey j, fj is the sampling effort expended in survey j, and 

q is the catchability coefficient.  That is, survey catch is proportional to abundance and 

sampling effort.  Let N2 = N1 – R, where R is the removal between surveys.  The 

likelihood function, Λann, for the annual model is: 

∏
=

−

=Λ
2

1 !
)(

j j

fqNI
jj

ann I
efqN jjj

 .   (1) 

For the multi-year model, we generalize the notation by adding a second subscript to 

account for year.  Thus, Nij refers to the abundance at the time of survey j in year i and, 

similarly for fij and Iij .  The likelihood function, Λ1qIR, for the 1qIR model for n years of 

data is: 

∏∏
= =

−

=Λ
n

i j ij
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)(
    (2) 
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with Ni2 = Ni1 – Ri, and Ri = removal in year i.    

Seasonal-q model (2qIR).—We follow the model development of the annual and 

1qIR models as described in Chapter 2 and assume survey catches are Poisson random 

variables.  If the pre- and post- harvest catchability coefficients differ but are constant 

over years, the likelihood function, Λ2qIR, for n years of data is: 

∏∏
= =

−

=Λ
n

i j ij

fNqI
ijijj

qIR I
efNq ijijjij

1

2

1
2 !

)(
   (3) 

with qj referring to the catchability coefficient in season j and the other symbols as 

before.  A more generalized model could incorporate j = 1, 2,…, k surveys.  However, 

corresponding removals must be known for the time period between each pair of 

successive survey indices.  For simplicity, we assume only two surveys are conducted 

per year.  For this case, 2qIR requires a minimum of two years of pre- and post-harvest 

indices of abundance, and requires different exploitation rates in at least two years.  

After two years of data collection, we have four survey indices that can be modeled as a 

system of four equations with four unknown parameters: 

(4d)                                                                
(4c)                                                                              
(4b)                                                                  
(4a)                                                                               

 )RN(fq)I(E
Nfq)I(E

)RN(fq)I(E
Nfq)I(E

2222222

221121

1112212

111111

−=
=

−=
=

 

where E denotes expectation.  The four expected values can be replaced with observed 

survey indices and the four equations solved simultaneously to obtain moment estimates 

of the parameters.  Without contrast in exploitation rates between years, the four 

equations (4a-4d) reduce to two sets of replicate observations, which is insufficient to 
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estimate four parameters.  Parameter estimates can be calculated analytically when two 

years of data are available: 
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where “^” denotes an estimate, Iij = catch in survey j of year i, and other symbols are as 

before.  When more than two years of data are available, the aid of non-linear 

maximization software is required to make parameter estimates.  Degrees of freedom 

accumulate as years of data are added (Table 3.1).   

   

Model Evaluation by Simulation 

We performed three types of simulations.  In the first type, the effect of 

exploitation rate was studied.  In the second type, we compared results across a range of 

values for the catchability coefficient in the second surveys.  For the first two 

simulation types, two years of data were analyzed.  In a third type of simulation, the 

effect of increasing the number of years of data was studied.   

Survey data were generated by Monte Carlo simulation.  Data used in all 

comparisons were Poisson random variables: 
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Iij  ~ Poisson(qj·Nij·fij)  ,  i = 1, 2,…, n,  j = 1, 2, and  Ni2 = Ni1 - Ri   (9) 

and were created by application of the “rpois” function in S-PLUS statistical software 

(MathSoft 2000).  Survey effort (fij) was assumed constant over all surveys in all years 

and, for convenience, was set equal to 1.   

When pre- and post-harvest catch rates are similar in magnitude, extremely large 

abundance estimates can result for all IR models.  When post-harvest survey catch is 

greater than or equal to pre-harvest survey catch, annual estimates are infeasible  (i.e., 

negative or infinite), and multiple-year model estimates may be infeasible.  

Additionally, multiple year models that make parameter estimates by non-linear 

maximization may fail to converge on solutions.  Infeasible estimates and simulations 

with convergence failures were counted and excluded.  Chen et al.  (1998b) concluded 

that the mean and variance were unreliable indicators of the performance of the 

estimator because extreme values of the estimates sometimes occur.  Consequently, we 

used the median estimate and the central 95% of the feasible estimates to assess the 

accuracy and precision of the estimator, respectively.   

Model performance was evaluated by: 1) the proximity of the median estimate 

to the known abundance, 2) the width of the central 95% of the estimates, and 3) the 

percentage of unusable simulations.   

Exploitation rate variation.— The performance of the 2qIR model was 

examined over a range of exploitation rate contrasts between years when only two years 

of data are available.  The exploitation rate in the first year was fixed at 10% for all 

scenarios, but exploitation rate varied from 10% to 80% in the second year.  Each 
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simulation was performed at three different levels of contrast between pre- and post-

harvest catchability coefficients.  The simulation parameters were: 

1) population size prior to removals: N11 = N21  = 1,000,000 animals   

 2) catchability, either:  

  a) q1 = 0.0002 and q2 = 0.0001 

b) q1 = 0.0001 and q2 = 0.0002, or 

  c) q1 = q2 = 0.0001 

 3) removals:  R1 =  u1·N11 = 100,000  

   R2 =  u2·N21    , for u2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

 4) survey effort: f = 1   

 5) number of years of data: n = 2  . 

Survey data were simulated 10,000 times for each comparison.  

Catchability variation.—The performance of the 2qIR model was evaluated over 

a range of contrasts between pre- and post-survey catchability coefficients, when only 

two years of data are available.  Catchability for the pre-harvest surveys was set at 

0.0001.  Catchability for the post-harvest survey varied from 1/10 to 10 times the pre-

harvest survey catchability (but was constant over years).  To ensure that model 

requirements for contrast in exploitation rates (u) between years was met, in this type of 

simulation, u was set at 0.2 for year 1 and 0.6 for year 2.  The simulation parameters 

were: 

1) population size prior to removals: N11 = N21  = 1,000,000 animals   

 2) catchability: q1 = 0.0001  

q2 = {1·10-5, 3·10-5, 5·10-5,  7·10-5, 9·10-5, 0.0001, 0.00011,  
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0.00013, 0.00015, 0.00017, 0.0002, 0.0003, 0.0004, 

0.0005, 0.0006, 0.0007, 0.0008, 0.001} 

 3) exploitation rate: u1 = 0.2   

    u2 = 0.6 

 4) removals:  R1 =  u1·N11 = 200,000  

   R2 =  u2·N21 = 600,000 

 5) survey effort: f = 1   

 6) number of years of data: n = 2  . 

Survey data were simulated 10,000 times for each of the twelve catchability scenarios.   

Additional years of data.—In the third type of simulation, 2qIR model 

performance was evaluated for improvement when more years of data are analyzed 

together; and 2qIR model performance was compared to that of both the annual and the 

1qIR models.  Model estimates were made with all three models over a range of 

contrasts between pre- and post-survey catchability coefficients as described above for 

the second type of simulation, except that the range of catchability variation in the 

second survey was restricted to 1/4 to two times that of the first survey.  Exploitation 

rate for years 3 to n, n > 2, was assumed to be moderate (u = 0.3).  Estimates for 

multiple-year models were made using the “nlminb” function in S-PLUS.  The 

simulation parameters were: 

1) population size prior to removals: N11 = N21 = …= Nn1 =1,000,000 animals   

 2) catchability: q1 = 0.0001  

 q2 = {2.5·10-5, 5·10-5,  7.5·10-5, 0.0001, 0.000125, 0.00015,  

0.0002} 
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 3) exploitation rate: u1 = 0.2   

    u2 = 0.6 

    u3 = … = un = 0.3 , n > 2 

 4) removals:  R1 =  u1·N11 = 200,000  

   R2 =  u2·N21 = 600,000 

   R3 = u3·N31  = … = Rn = un·Nn1  = 300,000  , n > 2 

 5) survey effort: f = 1  

 6) number of years of data: n = 2, 3, or 5. 

Survey data were simulated 1,000 times for each of the 7 catchability scenarios.   

 

Application to Tasmanian Rock Lobster 

 Study site.— The data used here originated from a rock lobster (Jasus edwardsii) 

population in southwestern Tasmania, Australia.  Data were collected from a study site 

(43.39 oS 145.88 oE) near Port Davey from 1996 to 2000.  Survey and fishery-removal 

data were collected by the Tasmanian Aquaculture and Fisheries Institute (TAFI) in 

Taroona, Tasmania, Australia.  Both survey and fishery data were collected at similar 

locations (the 7E2 block of stock assessment area 8), and from similar depths (40-80m). 

Three fishery-independent surveys were performed each year and commercial 

harvest and effort data were documented for the time periods between the surveys.  

Surveys were performed during the first week of the fishing season (“spring” survey: 

early to mid November), in mid-season (late February to mid March), and again during 

the final weeks of the season (“fall” survey: mid July to mid August).  Model estimates 

were made with each of the IR models (annual, 1qIR, and 2qIR) using two sets of data.  
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Both datasets incorporated the spring survey, but datasets differed by which survey 

index was used as the “second” required survey.  One dataset incorporated the mid-

season survey index as the second survey, while the other dataset incorporated the fall 

survey as the second survey.  The relative performance of each of the models was 

compared to one another, for each of the datasets used.     

Model choice.—Model performance with the rock lobster fishery data was 

evaluated using two methods, a likelihood ratio test and a diagnostic plot.  A likelihood 

ratio test was applied to decide which of the IR models (annual, 1qIR or 2qIR) was 

most parsimonious (see, e.g., Miller and Miller (1999)) for the rock lobster data of this 

population.  If the ratio of likelihoods for two possible nested models is θ, then -2·loge θ 

approximates the Χ2
r distribution under the null hypothesis, with the degrees of 

freedom, r, equal to the difference in the number of parameters estimated in the 

“unrestricted” likelihood (i.e., the likelihood with more parameters estimated) and that 

of the more “restricted” likelihood.   

 To test whether the annual model or 1qIR model was more appropriate, both 

equations (1) and (2) are fitted to the data.  For n years of data (n>1): 

        
edunrestrict

restricted

Λ
Λ=  θ           (10) 

and   -2·loge θ approximates Χ2
r with r = n-1 degrees of freedom.  The null hypothesis is 

no difference in catchability coefficients across years.  If the test fails to reject the 

hypothesis, the restricted model (1qIR) is appropriate.  If the hypothesis is rejected, 

there is evidence the catchability coefficients differ among years and the unrestricted 

annual model is more appropriate. 
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When applying a likelihood ratio test to determine if the 2qIR model is more 

appropriate than the 1qIR model, 1qIR is again the more restricted model.  The null 

hypothesis is that there is no difference between the pre- and post-harvest catchability 

coefficients.  The test statistic follows equation (10), but now r = 1 degree of freedom.  

If the test fails to reject the hypothesis, 1qIR is again the most appropriate model.  If the 

hypothesis is rejected, 2qIR is more appropriate.   

Model choice was also evaluated with diagnostic plots.  If a model is effective in 

estimating biomass, one should expect that 1) biomass estimates will be directly related 

to pre-harvest survey catch per unit effort (CPUE), and that 2) a regression of model 

estimates on pre-season survey indices will have an intercept close to the origin.  

Consequently, model performances will be evaluated by the strength of the relationships 

between pre-harvest survey CPUE and estimated biomass (using R2 values) and by the 

proximity of y-intercepts to the origin.   
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RESULTS 

Simulation results 

 Exploitation rate variation.—The 2qIR model worked well when there was 

moderate contrast in exploitation rates between years (i.e., u2 was 0.4 or more), 

regardless of the degree of contrast between the catchability coefficients (Fig. 3.1).  

With moderate exploitation contrast, 2qIR model estimates were always accurate, 

precise, and seldom unusable.  Annual model performance, however, was very sensitive 

to changes in the survey catchability coefficient, and model performance varied greatly 

among scenarios.   

 Median 2qIR model estimates were always accurate when |u1 – u2| was at least 

20%, regardless of the degree of contrast in catchability coefficients (Fig. 3.1).  Annual 

model estimates, however, were only accurate when catchability coefficients were equal 

(Fig. 3.1C).        

 The 2qIR model estimates were most variable when the simulated population 

was lightly (u = 0.2) or moderately (u = 0.3) exploited.  But the bounds of 2qIR model 

estimates always included the true abundance when u was greater than 0.1.  Though 

2qIR estimates were somewhat variable, the upper tails of the distribution of estimates 

were long, and when the upper 10% of estimates were excluded, estimates were always 

precise (Fig. 3.1).  Annual model estimate variability, however, differed greatly for the 

three different scenarios.  Annual model estimates had virtually no variability when pre-

harvest catchability was double that of post-harvest catchability, but the estimates never 
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included the known abundance (Fig. 3.1A).  When catchability of the second survey 

was double that of the first survey (Fig. 3.1B), the central 95% bands of annual 

estimates were roughly an order of magnitude greater than for the other scenarios, and 

the bands never included the known abundance when exploitation rate was 60%.  When 

catchability was equal for both surveys, annual bands were wide at very low 

exploitation rate, but bands were narrow when at least 30% of the population was 

harvested in the second year (Fig. 3.1C).         

 The estimates of the 2qIR model were feasible more often (92%) than annual 

model estimates (80% for all simulations of year 2), when all scenarios were combined.  

Most unusable 2qIR estimates (81%) were observed when exploitation contrast was low 

(i.e., when the difference between exploitation rates was ≤10%).  When exploitation 

rate contrast was at least 20%, the percentage of the 2qIR estimates that were infeasible 

never exceeded 12% in any scenario.    

 Catchability variation.—The 2qIR model worked well over a wide range of 

contrast in catchability coefficients between pre- and post-harvest surveys, but the 

annual model was very sensitive to catchability change (Fig. 3.2).  The 2qIR model 

estimates were accurate and precise over the entire range of catchability ratios (q2/q1) 

examined.  Further, 2qIR model estimates were almost always feasible.  In contrast, 

annual model estimates, on average, were accurate, precise, and feasible only if 

catchability ratios were close to unity.   

The 2qIR model produced accurate estimates when post-harvest catchability 

differed from pre-harvest catchability by a factor of 0.3 to 10 (Figs. 3.2 and 3.3).  The 

2qIR model performed better when post-harvest catchability was greater than pre-
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harvest catchability, than vice versa.  But, even the situations with the most extreme 

medians were only slightly below the true abundance.  In the worst-case scenario, post-

harvest catchability was 1/10 that of pre-harvest catchability, but estimates still were 

within 9% of the true value on average.  In all other cases, estimates were within 2% of 

the true abundance on average.  

In contrast, median estimates of the annual model were within 10% of the actual 

abundance only when there was no change, or nearly no change, in catchability between 

pre- and post-harvest surveys.  When exploitation rate was low (u = 0.2, year 1), annual 

model estimates always differed at least 30% from the true value on average when pre- 

and post-harvest catchability coefficients differed.  When exploitation rate was high (u 

= 0.6, year 2), the annual model made accurate estimates (within 10% of known 

abundance on average) more often, but only if the difference in catchability coefficients 

was 10% or less.     

The width of the central 95% of feasible estimates of both models was 

characterized by upper bounds that were at least three times the magnitude of the lower 

bounds (Fig. 3.2).  Though the precision of the 2qIR model estimates varied somewhat 

over the range of catchability ratios examined, the central 95% of the estimates always 

contained the known abundance (Fig. 3.2).  Variability of 2qIR estimates was greatest 

when pre-harvest catchability was greater than post-harvest catchability.  This trend was 

especially pronounced when the catchability ratio was < 0.5.  However, the variability 

of the 2qIR estimates was relatively constant when catchability ratios were ≥ 2 (Fig 

3.2C).  Annual model estimates were more precise than 2qIR estimates when the q-
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ratios were < 1.  But when catchability ratios were < 0.7 or > 1.3 the central 95% bands 

of annual estimates never included the true abundance.     

 Estimates of the 2qIR model were almost always feasible; in contrast, just more 

than half of the annual model estimates were feasible (Fig. 3.2b).  Of 120,000 

simulations analyzed with the 2qIR model (catchability ratios from 0.1 to 3.0), only 1% 

of the estimates were infeasible.  Most infeasible estimates of the 2qIR model (87%) 

were from the lowest q-ratios examined (0.1, and 0.3).  Twice as many simulations were 

possible for the annual model because each year of data was analyzed separately.  Of 

the 240,000 possible annual model estimates made, 24% were infeasible.  The year 

under high exploitation had more feasible estimates (92%) than did the year under low 

exploitation (60%).  However, no annual model estimates were feasible for catchability 

ratios ≥ 2 when exploitation rate was low (u = 0.2), or for ratios ≥ 4 when exploitation 

rate was high (u = 0.6)(Fig. 3.3).        

 Additional years.—With five years of data, the 2qIR model estimates were 

accurate, precise and almost always usable (Fig. 3.4).  Even with 5 years of data, 

however, the annual and 1qIR model estimates were accurate, precise, and largely 

usable on average, only when the catchability ratio was close to one.  

 The width of the central 95% of 2qIR estimates was wider when only two years 

of data were available than when three or five years were available (Fig. 3.5).  The 

improvement gained by using five years of data instead of three was marginal.  With 

any number of years, annual model estimate variability, accuracy and usability are as 

shown in figure 3.4, because the estimate for each year is made independently.  With 

two years of data however, 1qIR model estimates were more accurate and usable a 
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greater proportion of the time than the 1qIR results shown in figure 3.4; but overall 

patterns of the estimates were similar (Fig. 3.6).    

Variation in simulated surveys 

 There was a wide range of variation in simulated surveys (Table 3.2).  Because 

surveys were Poisson random variables, the low portion of this range was unreasonably 

low for a potentially clumped fisheries resource like rock lobster.  Consequently, it is 

possible that some surveys were overly precise, and there was concern that overly 

precise surveys may have affected parameter estimates in a similar fashion.  

Simulations were performed to test this.  

 

Application to southern rock lobster fishery  

Parameter estimates.—The 2qIR model predicted lower exploitation rates and 

catchability coefficients, and considerably higher biomass than those estimates of the 

other models (Fig. 3.7; Table 3.3).  All of the 2qIR model estimates appeared 

reasonable and were similar, regardless of which dataset was fit to the model.  

However, patterns for the annual and 1qIR model exploitation estimates differed 

considerably for each set of data.  Moreover, the exploitation rate estimates of both the 

annual and 1qIR models were unreasonably high for estimates based on the data that 

included the mid-season surveys.  Both the annual and 1qIR models predicted that more 

than 100% of the population was harvested in two of the five years of data (Fig. 3.7A).  

Though 2qIR model estimates were also high at beginning of the dataset (they ranged 

from 80% to 91%, for mid-season, and fall data, respectively), the 2qIR model 

estimates from both datasets predicted that exploitation rate steadily declined during the 
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next four years (Table 3.3; Fig. 3.7).  The 2qIR model almost always estimated lower 

catchability coefficients than did the other models, and predicted that catchability 

decreased by more than 70% between the spring and fall surveys.  Correspondingly, 

2qIR model estimates of abundance were much higher than those predicted by the other 

models.  In 1998, the 2qIR model abundance estimates from both datasets were about 

50% higher than those estimates of the annual or 1qIR models (Table 3.3).   

Model choice.—A likelihood ratio test found the most parsimonious model was 

1qIR, regardless of which dataset was analyzed (Table 3.4).  Diagnostic plots, however, 

suggest that the 2qIR model performed best (Fig. 3.8).   

Diagnostic plots of estimates made from the mid-season data (Fig. 3.8A) 

showed that, although both the 1qIR and 2qIR model estimates of abundance had strong 

relationships with the pre-harvest survey catch rate (R2 values were 0.88, and 0.92, 

respectively), annual model estimates were only weakly related to the pre-harvest 

survey catch rate (R2 = 0.06).  Intercepts for both 1qIR (8,121) and 2qIR (8,093) were 

similar and very close to the origin for the mid-season data, but the annual model 

intercept was over 50,000 kg.   

When fall survey data was fit to each of the models, all model estimates of 

abundance had strong relationships with pre-harvest survey catch rate (R2 values were 

0.94, 0.95, and 1.00 for the annual, 1qIR and 2qIR model estimates, respectively), but 

the 2qIR model demonstrated the strongest relationship.  Intercepts were similar for the 

annual (11,679) and 1qIR (10,415) models, but the 2qIR model intercept (3,698) was 

the closest to the origin. 
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Equations for the regression lines were: 

mid-year data:  

  kg 40350·09910 1 ,I,N̂ midann +=−     (11) 

   kg 1218·64725 1-IR1 ,I,N̂ midq +=      (12) 

   kg 0938·58438 1IR2 ,I,N̂ midq +=− .    (13) 

fall data:  

   kg 67911·48422 1 ,I,N̂ fallann +=−     (14) 

   kg 41510·41023 1IR1 ,I,N̂ fallq +=−     (15) 

   kg 6983·44239 1l-IR2 ,I,N̂ falq +=  .   (16) 

The slope of the regression line estimates the reciprocal of survey gear catchability (1/q) 

for the annual and 1qIR models.  The estimates for q then, using the mid-season data 

were 9.9·10-5, and 3.9·10-5 for the annual and 1qIR models, respectively.  When the 

fall data were used instead, annual and 1qIR model estimates of survey gear catchability 

were 4.4·10-5  and 4.3·10-5, respectively.   
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DISCUSSION 

 

Model evaluation by simulation 

 The 2qIR model was accurate, precise and usable with almost all simulated data 

when exploitation rate differed by at least 30% between at least 2 years, regardless of 

the contrast in catchability coefficient between pre- and post-harvest surveys.  

Performance indicators for the 2qIR model improved when a third year of data was 

added, but model performance with 5 years of data was similar to that with 3 years.   

When catchability varied seasonally, model performance for the 1qIR model 

deteriorated somewhat when additional years were added (Fig. 3.6).  The 1qIR model is 

based on the assumption that catchability is constant.  So, as more data that violate the 

assumptions of the model are added to the dataset, the chances of getting a particularly 

troublesome catch rate increase.  The only instances when the annual or 1qIR models 

outperformed the 2qIR model were when catchability was constant (or very nearly 

constant) between surveys, and exploitation rate was very high (60% or more).  In such 

situations, use of the simpler models is appropriate and the 2qIR model suffers a penalty 

in variability for unnecessarily estimating an extra catchability parameter.   

  

Application to Tasmanian Rock Lobster 

Though the likelihood ratio test suggests that the 1qIR model was the most 

parsimonious in this application, diagnostic plots, and patterns of model estimates 
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suggest the 2qIR model performed best for this population of rock lobster.  When using 

the mid-season data, diagnostic plots showed only a slight improvement of the 2qIR 

model performance over that of the 1qIR model.  However, an examination of the 

patterns of parameter estimates demonstrated a distinct improvement of the 

performance of the 2qIR model over that of the other models.  The unreasonable 

exploitation estimates of the annual and 1qIR models suggest that both models 

performed poorly with the mid-season data.  When fall data were incorporated instead, 

the intercept of the 2qIR model was closer to the origin than those of the other models; 

and, though all model abundance estimates had strong relationships with survey CPUE, 

the 2qIR model estimates were directly related (R2 = 1.0) to CPUE.  Additionally, about 

5% more of the variation in 2qIR abundance estimates was explained by CPUE than 

was that of the other models.   

Recent work suggests that use of either the annual or 1qIR models may be 

inappropriate for the dataset that included the fall surveys.  Ziegler et al. (2003) 

predicted that the relative catchability of rock lobster in this region decreases markedly 

after the mid-season survey is conducted, and that catchability at the time of the fall 

survey is distinctly lower than that of the spring and mid-season surveys.  The 2qIR 

model results presented here appear to support the conclusions of Ziegler et al. (2003).  

The 2qIR model estimated that catchability declined by more than 70% between the 

spring survey in November and the fall survey in August.  If this predicted change in 

catchability is real, it is important to account for.  When the IR models were applied to 

the dataset that included the fall data, the 2qIR model predicted that abundance was 

44% higher and exploitation was 28% lower, on average, than corresponding estimates 
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of the annual and 1qIR models, because those models could not accommodate the 

catchability change.  Previous studies of different populations of this species have also 

documented the importance of accounting for seasonal catchability change (Ziegler et 

al. 2002; Frusher and Hoenig 2003).  Simulations presented here suggest that biases can 

be severe for annual and 1qIR model estimates when the assumption of constant 

catchability is not met for these models.  Thus, it appears likely that the 2qIR model is 

the most appropriate model to use in the stock assessment of this population, regardless 

of which dataset is used.   

The choice of assessment model may depend on the management question and 

the management goal.  For instance, if the task is to set a quota, basing the decision on 

1qIR estimates would be more conservative in this fishery, because the 1qIR model 

predicts that the population is experiencing a higher level of exploitation than the 2qIR 

model does.  Alternatively, if the manager needs to decide what level of exploitation the 

population can withstand, it would be safer to use the 2qIR model estimates, which 

predict that this population has resisted lower levels of exploitation.   

It appears to be important to account for catchability change in this fishery.  

Many other fishery situations require a model that accommodates changing catchability.  

When pre- and post-harvest surveys are conducted with different gear, or when the 

catchability of a species is known to change seasonally (Paloheimo 1963; Ziegler et al. 

2002), a 2qIR model will be appropriate, as long as exploitation rate varies between two 

of the years in the dataset.   

If there is any doubt as to which model to apply, our simulation results suggest 

that the 2qIR model will probably give the most accurate estimate.  Though estimates 
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may suffer slightly in precision if a simpler model is truly appropriate, 2qIR model 

estimates will still be accurate on average, and they do not demonstrate the serious 

biases that both the annual and 1qIR models demonstrate when their assumption of 

constant catchability is not met.                 
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TABLE 3.1 

Comparison of degrees of freedom accumulated for each model discussed in the text, 

given n years of data.  

 

 

Model 

Number of 

Observations 

Number of 

Parameters to Estimate 

 

Degrees of Freedom 

Annual 2n 2n 0 

1qIR 2n n+1 n-1 

2qIR 2n n+2 n-2,  for n≥2 
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TABLE 3.2 

Ranges of the coefficient of variation observed for the pre-harvest survey and the post-

harvest survey for each simulation performed, and the number of simulations (n) 

performed for each scenario.  Simulation type corresponds to sub-headings in the text 

where each simulation is described in detail.    

 

Simulation Type n Pre-harvest survey cv Post-harvest survey cv

Exploitation rate 

variation 

   

q1 >> q2 10,000 7.1% 10.4% - 22.4% 

q1 = q2 10,000 10.1% 10.4% - 22.4% 

q1 << q2 10,000 10.1% 7.4% - 15.8% 

Catchability variation  q1 = 0.0001 q2 varies 

 10,000 10.1% 6.4% - 50.2% 

Additional years  q1 = 0.0001 q2 varies 

2 years 1,000 9.8% - 10.2% 8.1% - 32.1% 

3 years 1,000 9.8% - 10.2% 8.1% - 32.1% 

5 years 1,000 9.7% - 10.3% 8.0% - 31.8% 
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TABLE 3.3 

Comparison of parameter estimates for a rock lobster fishery near Port Davey, 

Tasmania, Australia.  Estimates of (a) abundance (kg), (b) survey catchability 

coefficients, and (c) exploitation rate were made for each IR model.  (A) Parameter 

estimates were made using spring and mid-season survey data; (B) estimates were made 

using spring and fall survey data.  Year indicates the calendar year at the beginning of 

the fishing season (November). 

A.  Spring & mid-season data 

Year 

 

Annual 

 

1qIR 

 

2qIR 

(a) Abundance (kg)    

1996 52,877.9 46,408.5 57,184.8 

1997 40,681.5 55,160.0 83,514.7 

1998 103,460.7 104,499.8 150,564.7 

1999 32,493.1 37,406.6 54,544.7 

2000 120,563.1 46,162.9 69,312.4 

(b)    Catchability 

       Coefficient (q) 

 

q = 3.354·10-5 

 Pre-harvest:   

2.339·10-5 

                   Range: 
1.045·10-5 to 

5.727·10-5 

3.326·10-5 Post-harvest: 

1.591·10-5 

(c) Exploitation rate (u)    

1996 0.86 0.98 0.80 

1997 1.42 1.05 0.69 

1998 0.78 0.78 0.54 

1999 1.16 1.01 0.69 

2000 0.23 0.60 0.40 
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B.  Spring & fall data 

Year 

 

Annual 

 

1qIR 

 

2qIR 

(a) Abundance (kg)    

1996 46,622.5 46,177.9 50,236.9 

1997 63,930.3 64,548.0 94,688.3 

1998 90,525.2 92,680.6 141,941.1 

1999 43,930.0 43,106.3 62,300.7 

2000 31,710.0 32,872.7 52,307.0 

(b)    Catchability 

       Coefficient (q) 

 

q = 3.458·10-5 

 Pre-harvest:   

2.419·10-5 

                   Range: 
2.617·10-5 to 

3.974·10-5 

3.478·10-5 Post-harvest: 

6.400·10-6 

(c) Exploitation rate (u)    

1996 0.98 0.98 0.91 

1997 0.91 0.90 0.61 

1998 0.90 0.87 0.57 

1999 0.86 0.87 0.60 

2000 0.87 0.84 0.53 
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TABLE 3.4 

Models compared by the likelihood ratio test.  Displayed are: loge likelihood objective 

values, likelihood ratio test statistics (-2·loge θ), degrees of freedom (r), and critical 

values (αr = 0.05) of the Χ2distribution.  Results are displayed for data that included (A) 

the spring and mid-season survey indices, and (B) the spring and fall survey indices.  

 

Models 

Compared 

Objective 

value 

 

-2·loge θ 

Degrees of 

freedom (r) 

Critial values 

Χ2 (αr = 0.05) 

A. Spring & mid-season data: 

1qIR 

Annual  

-6.8843 

-6.6929 

 

0.3828   ns 

 

4 

 

9.488 

1qIR 

2qIR 

-6.8843 

-6.8668 

 

0.0350     ns 

 

1 

 

3.841 

B.  Spring & fall data: 

1qIR 

Annual  

-4.8178 

-4.7408 

 

0.1540   ns 

 

4 

 

9.488 

1qIR 

2qIR 

-4.8178 

-4.7525 

 

0.1306     ns 

 

1 

 

3.841 
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FIGURE 3.1 

Comparison of annual and 2qIR model performance for three contrasts in exploitation 

rate.  Each vertical bar represents the central 95% of feasible estimates from 10,000 

simulations of 2 years of survey data.  Ten percent of the estimates were greater than 

the location of the horizontal hash marks on a bar.  Circles (annual model) and squares 

(2qIR) show the medians of the central 95% of the estimates.  Exploitation rate was 

fixed at 0.1 in year 1 (solid line, filled symbols) for all simulations.  Exploitation rate 

varied among simulations in year 2 (dashed line, open symbols), and ranged from 0.1 to 

0.8.  A, B, and C differed in catchability contrast between pre- and post-harvest surveys: 

(A), catchability in the pre-harvest survey was double that of the post-harvest survey (q1 

= 0.0002; q2 = 0.0001); (B), catchability in the pre-harvest survey was half that of the 

post-harvest survey (q1 = 0.0001; q2 = 0.0002); (C), catchability coefficients were equal 

(q1 = q2 = 0.0001).  Row (a) depicts abundance estimates.  True abundance is indicated 

by the light grey line.  Year 1 and year 2 plots in (a) were slightly offset horizontally so 

both estimates were visible.  All abundance plots are the same scale except for the 

annual model plot of scenario (B).  Row (b) depicts the percentage of unusable 

(infeasible) estimates for each model.  Only one line is drawn for the 2qIR model 

because years are estimated simultaneously and a failure for either or both years is 

counted as a failure.         
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FIGURE 3.2 

Comparison of annual model performance with that of the 2qIR model, using 10,000 

simulations of 2 years of data.  Performance is compared over a range of seasonal 

change in the survey gear catchability coefficient.  In both years, catchability of the first 

survey was equal to 0.0001.  The catchability coefficient of the second survey was the 

same for both years in any one simulation, but varied from 0.00001 to 0.0003 among 

scenarios.  Columns (A) and (B) are plotted at the same scale.  Column (C) presents the 

same results as (Ba) but at one-tenth the scale to show details.  Performance indicators 

were (row a): 1) the median estimate (symbols), 2) the width of the interval containing 

95% of the feasible estimates (vertical lines), and (row b): 3) the percentage of unusable 

simulations.  Simulations were considered unusable if estimates were infeasible 

(negative or infinite).  Ten percent of the estimates were greater than the location of the 

horizontal hash marks on the vertical lines.  Exploitation rates were 20% in year 1 (solid 

lines, filled symbols) and 60% in year 2 (dashed lines, open symbols).  Year 1 and year 

2 plots in (a) were offset slightly so both estimates were visible.  A light grey line was 

added for reference in (a) to indicate known abundance.     
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FIGURE 3.3 

Comparison of annual model performance with that of the 2qIR model, using 10,000 

simulations of 2 years of data.  Performance is compared over a range of seasonal 

change in the survey gear catchability coefficient.  In both years, catchability of the first 

survey was equal to 0.0001.  The catchability coefficient of the second survey was the 

same for both years in any one simulation, but varied from 0.00001 to 0.001 among 

scenarios.  Columns (A) and (B) are plotted at the same scale.  Column (C) presents the 

same results as (Ba) but at one-tenth the scale to show details.  Performance indicators 

were (row a): 1) the median estimate (symbols), 2) the width of the interval containing 

95% of the feasible estimates (vertical lines), and (row b): 3) the percentage of unusable 

simulations.  Simulations were considered unusable if estimates were infeasible 

(negative or infinite).  Ten percent of the estimates were greater than the location of the 

horizontal hash marks on the vertical lines.  Exploitation rates were 20% in year 1 (solid 

lines, filled symbols) and 60% in year 2 (dashed lines, open symbols).  Year 1 and year 

2 plots in (a) were offset slightly so both estimates were visible.  A dotted line was 

added for reference in (a) to indicate known abundance.     
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FIGURE 3.4 

Comparison of annual, 1qIR, and 2qIR model performance with 5 years of simulated 

data.  Shown are seven scenarios, which varied in the catchability coefficient of the 

second survey.  Each scenario was simulated 1000 times.  Plots of each year were offset 

slightly, so all years were visible.  Row (a) depicts abundance estimates for each model 

(columns).  Median estimates for individual years are represented by open circles (low 

exploitation year, u = 0.2, dashed line), and filled triangles (high exploitation year, u = 

0.6, solid line).  Filled diamonds represent a mean of the three years with moderate 

exploitation rate (u = 0.3).  Vertical lines extending from the medians represent the 

central 95% of model estimates.  Ten percent of the estimates were greater than the 

location of the horizontal hash marks on the vertical lines.  Row (b) depicts the 

percentage of unusable simulations for each model.   
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FIGURE 3.5 

Comparison of 2qIR model performance with 2 years, 3 years, and 5 years of data.  

Model performance improves with a third year of data, but performance is similar with 

3 or 5 years.  Shown are seven scenarios, which varied in the catchability coefficient of 

the second survey.  Each scenario was simulated 1000 times.  Plots of each year were 

offset slightly, so all years were visible.  Row (a) depicts abundance estimates for each 

model (columns).  Median estimates for individual years are represented by open circles 

(low exploitation year, u = 0.2, dashed line), and filled triangles (high exploitation year, 

u = 0.6, solid line).  Filled diamonds represent a mean of the three years with moderate 

exploitation rate (u = 0.3).  Vertical lines extending from the medians represent the 

central 95% of model estimates.  Ten percent of the estimates were greater than the 

location of the horizontal hash marks on the vertical lines.  Row (b) depicts the 

percentage of unusable simulations for each scenario.   
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FIGURE 3.6 

Comparison of 1qIR model performance with 2 years and 5 years of data.  1qIR model 

performance deteriorates somewhat as more years of data are added.  Shown are seven 

scenarios, which varied in the catchability coefficient of the second survey.  Each 

scenario was simulated 1000 times.  Plots of each year were offset slightly, so all years 

were visible.  Row (a) depicts abundance estimates for each model (columns).  Median 

estimates for individual years are represented by open circles (low exploitation year, u = 

0.2, dashed line), and filled triangles (high exploitation year, u = 0.6, solid line).  Filled 

diamonds represent a mean of the three years with moderate exploitation rate (u = 0.3).  

Vertical lines extending from the medians represent the central 95% of model estimates.  

Ten percent of the estimates were greater than the location of the horizontal hash marks 

on the vertical lines.  Row (b) depicts the percentage of unusable simulations for each 

scenario.   
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FIGURE 3.7 

Parameter estimates of abundance (kg), catchability coefficients, and exploitation rates 

for two sets of rock lobster fishery data.  Estimates in column (A) were based on data 

collected in spring and mid-season surveys; estimates in column (B) were based on data 

collected in spring and fall surveys.  All data were collected from stock assessment area 

8, near Port Davey, Tasmania, Australia, for the fishing seasons that spanned years 

1996/1997 to 2000/2001.  Open squares denote 2qIR model catchability coefficient 

estimates for spring surveys.   
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FIGURE 3.8 

Comparison of diagnostic plots for each model.  Plots represent regressions model 

abundance estimates against pre-harvest survey catch rates of corresponding years.  

Dotted lines indicate the y-intercept for each model.  Regressions in (A) were based on 

data collected in spring and mid-season surveys; regressions in (B) were based on data 

collected in spring and fall surveys.  All data were collected from stock assessment area 

8, near Port Davey, Tasmania, Australia, for the fishing seasons that spanned years 

1996/1997 to 2000/2001.   
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CONCLUSIONS 

 

Documenting seasonal trap inhibition of small lobsters 

 The experiment described here documented that the catchability of small 

lobsters in traps containing one large female lobster (seed) was lower in the Austral 

summer (February) when compared to control traps without seeds.  The strongest 

inhibitory effect was observed in small females.  No evidence of heterogeneity in 

survey catchability was found in the spring (November).  If there are no inhibitory 

interactions in November then the catch rate of small lobsters, at that time, should be 

uninfluenced by the relative abundance of large lobsters.  Thus, the catch rate of small 

animals in November might track trends in abundance over time.  More testing is 

needed during more months of the year to clearly resolve the annual periodicity of the 

sex- and size-specific catchability patterns for rock lobster in Tasmania.  Additional 

tests should also be performed with traps seeded with more than one large lobster to 

determine if an inhibitory (or attractant) effect on small lobsters is proportional to the 

number of large lobsters already in a trap.  

Nonetheless, this study has given fishery managers some indication that a survey 

of sub-legal sized lobsters performed in November might reliably estimate the relative 

abundance of these animals.  Perhaps just as important, fishery managers are now aware 

that a sublegal-catch index should not be performed in late summer, when the strong 
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trapping inhibition observed for small animals can lead to serious biases in relative 

abundance estimates.  With this information, managers may now be able to develop a 

successful index of future recruitment one or two years before animals recruit to the 

fishery.     

 

Abundance estimation by the index-removal (IR) method 

 The two new IR models introduced here generalized the IR method to be useful 

under a much wider variety of conditions than was previously allowed by the annual 

model.  Moreover, both the 1qIR and 2qIR models demonstrated substantial 

improvements in the precision of their estimates when compared to the annual model.  

The performance of the new models, both in simulation and in application, show that 

the IR method can be a valuable assessment tool for crustacean fisheries.   

 Since its introduction (Petrides 1949), the IR method has received little 

development.  Though many have suggested that the method holds promise (Eberhardt 

1982; Dawe et al. 1993; Chen et al. 1998; Hoenig and Pollock 1998), the precision of 

annual model estimates has been a problem (Eberhardt 1982; Routledge 1989; 

Roseberry and Woolfe 1991).  Until this work, only Chen et al. (1995) have contributed 

to improving the precision of annual model estimates, by suggesting that the same 

sampling locations be used for both surveys.   

 The 1qIR model substantially improves the precision of estimates over that of 

the annual model estimates, and precision continues to improve as more years are added 

to the dataset.  The proportion of simulated datasets providing feasible estimates also 

increases with more years of data.  The 1qIR model also makes reasonable estimates 
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possible in years where the catch rate increases between the first and second surveys – a 

situation that would have previously resulted in no feasible estimates for such years 

with the annual model.   

Though the assumption of constant catchability is violated in many fisheries 

(Paloheimo and Dickie 1964; Hilborn and Walters 1992; Ziegler et al. 2002), evidence 

was presented by Ziegler (2003), and here in Chapter 2, that the assumption of constant 

catchability was tenable for some rock lobster datasets.  For such fisheries, the 1qIR 

model offers the greatest precision for parameter estimates of the IR models.    

The 2qIR model median estimates were accurate and precise when simulated 

over wide ranges of both exploitation rate contrast between two years of data, and 

catchability contrast between surveys.  The estimates of the 2qIR model were feasible 

most of the time.  The only 1qIR model and annual model estimates that outperformed 

those of the 2qIR model occurred when catchability was constant.  Though the 2qIR 

model requires some contrast in exploitation rates between at least two years of a 

dataset, the model performed reliably (i.e., estimates were accurate and precise), with 

only two years of simulated data, whenever the difference between exploitation rates in 

the two years was 0.3 or more.  Some gains in model performance were made when an 

additional year was added to the dataset, but results were essentially the same when 

three or five years of data were analyzed.   

When the 2qIR model was applied to real data from a rock lobster fishery, all 

parameter estimates appeared reasonable.  Three survey indices of the southern rock 

lobster population are conducted annually in Tasmania (spring, mid-season, and fall).  

Previous work (Ziegler et al. 2003) suggests that, although catchability is relatively 
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constant between the spring and mid-season surveys, catchability is likely to be lower 

for the fall survey.  The 2qIR model predictions were similar (Fig. 4.1) whether model 

estimates were made using the spring and mid-season surveys with similar 

catchabilities, or, the spring and fall surveys whose catchabilities are thought to differ 

(Ziegler et al. 2003).  Moreover, the decrease in fall survey catchability predicted by the 

2qIR model (Fig. 4.1) also supported the relative catchability estimates of Ziegler et al. 

(2003). 

Both simulation results and the application of all three IR models to rock lobster 

data from Tasmania suggest that the 2qIR model can be reliably applied in more 

situations than can the 1qIR or annual models.  Thus, the 2qIR model seems likely to be 

the most reliable choice for the IR estimators discussed here, unless one is reasonably 

sure that either the catchability coefficient or the exploitation rate is nearly constant 

among all years in a dataset.   

The extreme biases seen in estimates of the annual and 1qIR models when 

catchability assumptions were violated in the simulations of Chapter 3, and the 

seasonal, sex- and size-specific catchability changes presented in Chapter 1, all 

demonstrate how important it is to have knowledge of the variability of catchability 

within a season.  Such knowledge is important both for designing an unbiased survey, 

and for translating parameter estimates into advice for management.  In Chapter 3, even 

though a likelihood ratio test could not find evidence that estimation of an extra 

parameter was required, prior knowledge of evidence of catchability change (Ziegler et 

al. 2003), along with the diagnostics of model performance, suggested that the 2qIR 

model parameter estimates were the most appropriate of the IR estimates. 
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Model choice   

The 2qIR model predicted substantially higher abundance than did the 1qIR and 

annual models for the rock lobster data from Tasmania presented in Chapter 3.  If one 

wishes to take a precautionary approach to management decisions, one is faced with a 

dilemma because which results are conservative depends on the circumstance.  For 

instance, if the goal of management were to set a new quota, the 1qIR and annual model 

estimates would be more conservative because they predict the current population is 

already experiencing a very high level of exploitation.  However, if the goal were to 

decide how much exploitation a population could withstand, then the 2qIR estimates 

that predict the population has survived a lower level of exploitation would provide 

more conservative advice on target exploitation levels.   

 

Future work 

 The IR models described here assume a closed population.  They will work best 

in crustacean fisheries with a well-defined molting season because the discontinuous 

growth pattern of such crustaceans ensures there is no recruitment between surveys due 

to growth.  The IR models could also be used with vertebrate populations, if the fishery 

is a pulse (relatively short) fishery.  How short the fishery needs to be depends on the 

life history of the species.  If growth and reproduction are highly seasonal, and natural 

mortality is low, then a fishery lasting several months may approximate a pulse fishery.   

Alternatively, IR models could also be applied to vertebrate populations if the modeler 

accounts for growth of the animals within the model.   
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The closed-population IR models are particularly well suited for a heavily-

exploited, recruitment-driven fishery like that of the rock lobster in southern Tasmania.  

This is because the IR models assume no linkage of the population from one year to the 

next.  Frusher (1997) reported that 88% of the population is composed of new recruits.  

Thus, there is little carry-over of the stock from one year to the next and a link between 

years is relatively unimportant for modeling the fishery.  However, when information is 

available that links years, an IR model that relaxes the assumption of a closed 

population can be developed.  When a successful survey of sub-legal sized lobsters is 

implemented in Tasmania, a linked-year model will be able to be applied.  The linked-

year model will be useful to model those animals that were not harvested in previous 

years, and which remain unaccounted for in the current IR models.  Such an open-

population model would be especially useful for fisheries where the abundance of 

previous cohorts is as important, or more important than is the abundance of new 

recruits.  An open-population IR model would be analogous to the catch-survey analysis 

model with one survey per year (as expressed by Mesnil 2003; originally described by 

Collie and Sissenwine 1983), but would be more efficient, because the open-population 

IR model would incorporate a second survey each year.  

The generalized IR method is now useful for a variety of fisheries, and there is 

potential to generalize and develop the model further for use in even more applications.  

It remains a relatively simple model that estimates few parameters.  Consequently, it 

may provide a useful alternative to more complex models that require the estimation of 

many more parameters.  It also remains useful to double-check the estimates of other 

methods (Dawe et al. 1993) but, with the generalizations made here, the IR method may 
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now be precise enough to be relied upon for its own estimates, whether or not 

catchability changes between the pre- and post-harvest surveys.   
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FIGURE 4.1 
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Abundance and exploitation rate estimates of the 2qIR model.  Estimates were similar 

whether the data analyzed included the spring and mid-season surveys, which are 

thought to have similar catchabilities (Ziegler et al. 2003), or the spring and fall 

surveys, which are thought to differ in their relative catchabilities (Ziegler et al. 2003). 
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