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ABSTRACT 
 

Coastal zone landscapes can be studied through the use of remote sensing and model development. 
Four related studies are summarized in this paper that address common issues and concerns faced by 
resource managers in the monitoring and characterization of landscape conditions within a coastal 
zone. The initial study examined variable spectral and spatial image resolutions and training sample 
methods required for the accurate classification of a coastal landscape. Imagery with 25nm bandwidth 
and 4m pixel size outperformed three other image resolution combinations, as determined by 
comparing the accuracy of image classification with field-based truth data. Thirteen natural and 
cultural landscape features were classified. The second study investigated the capability of high-
resolution multi- spectral imagery to characterize Phragmites australis L. stands into high, medium 
and low categorical biomass classes. Ten P. australis sample sites were grouped into these three 
classes based on image reflectance values and field-based biomass measurements. Similarity of group 
members showed that reflectance values distinguished rank ordered differences in biomass between 
various P. australis stands. In the third study, correction of an imagery-derived cover classification 
map was accomplished by assignment of expert knowledge, integration of that of knowledge into a 
simple spatial model, and subsequent generation of a revised cover map. A partial prototype selection 
of expert rules was sufficient to change more than 20 percent of the originally classified landscape 
pixels entirely by post-classification. The final study discusses the development of an empirical model 
that used vegetation community classes to predict the characteristics: a) soil type, b) soil compaction 
rate, and c) elevation. Vegetation class distribution proved to be a reliable surrogate for estimating 
these variables based on field-based statistical scores of association and significance tests. Mapped 
estimates of soil type, soil compaction at 12 and 18inch depth, and elevation are provided to illustrate 
spatial variables estimated from vegetation types. The results of the four studies completed for this 
paper suggests various image resolutions and methods to acquire resource data that might be used in 
landscape level ecological modeling.  

 
 

INTRODUCTION 
 

The world’s coastal zone is one of the most dynamic areas of the world, with 440,000 km length of 
shoreline where the processes of the land and sea are brought together (Cooke and Doornkamp, 1990; Krabill et al, 
2000). Coastal zones do not have well defined boundaries but are considered to be the terrestrial area landward of 
the land- sea interface that is influenced by the sea; specifically, it includes the zone of surf where waves influence 
the land, the dune zone, and the zone of vegetation influenced by salty groundwater, salt aerosols, and storms which 
all affect plant growth (Ahnert, 1996). Many issues affect coastal and marine resources, including: population 
increase (Cohen et al, 1997), heavy metals (Knight and Pasternack, 2000), excess nutrient loadings, over-fishing, 
introduction of overheated water from factories, habitat loss, sedimentation, marine and beach debris, oil spills, sea 
level rise (White and Pickett, 1985; Nicholls et al, 1994; Nicholls and Leatherman, 1995), coastal property rights, 
loss of biological diversity and non-indigenous species (Marsh and Dozier, 1981; Smith, 1996; French, 1997). 
Disturbances along the coast have a profound effect on plant and animal life (Huggett, 1995). The problems of 
coastal management do not recognize artificial political borders (Cooke and Doornkamp, 1990). 

 
Strategies to protect coastal systems have proved difficult to implement (Turner and Schubel, 1994). 

Fortunately, technological advances do provide potential tools to assist in decision-making for long-term 
sustainability of our planet. These include: a) software models (Lam et al, 1998 {environmental monitoring}; 
Quattrochi et al, 2001 {thermal urban landscapes}; Sanders and Tabuchi, 2001 {flood risk assessments}; b) 
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geographic information systems (Janssen et al, 1990); and c) remote sensing (Harris and Ventura, 1995; Jensen, 
1996; Cihlar et al, 2000a; Stee1e, 2000). These technologies are available and ready for inclusion into a resource 
manager's tool-box. Resource managers should, however, closely consider present capabilities, and limitations, of 
these tools for deriving geospatial data needed to support GIS and ecological models (Wessman et al, 1998). 
 

Long-term studies of our varied environments and the monitoring of competing influences of nature and 
man are critical for decision-makers to have information enabling them to make informed judgments (Cooke and 
Doomkamp, 1990; Cihlar et al, 2000b; Slater and Brown, 2000). The term landscape, as defined by Lyle (1999), is 
considered to be an ecosystem comprised of biotic and abiotic element interaction, flow of energy and materials, and 
land resource inventory. A land resource inventory is a necessary beginning for environmental planning or resource 
management decision-making (Lyle, 1999). Remote sensing provides a fast, accurate, affordable means to acquire 
such land resource data (Redfern and Williams, 1996). This land resource data is crucial to assist in determining the 
functioning of terrestrial ecosystems (Cihlar et al, 2000b). Much of this needed data has yet to be acquired. For 
example, United States land resource data (specifically, Anderson level II data) is only about 60% complete for all 
land resource cover classes (Yang et al, 200 I; Vogelmann et al, 2001). Additional data will need to be acquired to 
fill in the missing 40%, and updated data sets of the present 60% coverage will be routinely required from a growing 
user community expectation for current land cover data for monitoring purposes (Vogelmann, et al, 2001). 

 
The purpose of this collection of related studies was to show how coastal zone landscape can be 

characterized using remote sensing and empirical model development to the betterment of the resource management 
community. Four related remote sensing studies are summarized with results that can be applied by resource 
managers. The first study examined spectral and spatial resolution requirements for accurate landscape cover 
classification. Study two investigated the capability of imagery to remotely assess biomass differences in stands of 
Phragmites australis. This work extended the first study by continuing beyond class measurements only and into 
quantitative measurements of a specific plant community. The third study describes results of a post-classification 
technique designed to correct misclassifications in cover class maps derived from imagery. Expert knowledge was 
used to parameterize a spatial correction model of a barrier island environment. The final study discusses the 
development of empirical models that use vegetation community class to predict a) soil type, b) soil compaction 
rate, and c) elevation. In the absence of a direct remote sensing method for measuring soil conditions and elevation, 
or in other words, where the surface is concealed by vegetation, the vegetation itself was used a surrogate to 
indirectly estimate soil and elevation variables. Collectively, these studies address common issues and concerns a 
resource manager faces with the monitoring and characterization of landscape conditions within a coastal zone. 

 
METHODS 

 
The first study was an investigation at Fort Story, Virginia of spectral, spatial, and spectral and spatial 

resolution combined, as well as a review of six training sample methods used.   Figure 2 shows a false color 
composite image of 1m spatial multispectral (MSI) imagery acquired in May 1999 over the Fort Story site using 
25nm bandpass filters. The study site is approximately 400 x 500 meters in size representing a mixture of manmade 
and natural land cover classes that are typical of the entire installation.  The classification accuracy of maps 
compiled from imagery with wide bandwidths (75nm) was compared to the accuracy of map classifications derived 
from narrow bandwidths (25nm).  

 
Study two described a method for determining categorical measures of biomass P. australis from high- 

resolution multispectral imagery. The field site was the uninhabited Parramore Island barrier off the eastern shore of 
Virginia (see Figure 1). Eighteen barrier islands make up a chain trending northeast-to-southwest off of Virginia's 
Eastern Shore, with Parramore Island as the central-most island in this barrier chain. No permanent human 
population inhabits the island and activities such as agriculture, hunting, logging or similar activities are prohibited. 
Phragmites australis is an undesired opportunistic invader species that can quickly overtake native plant habitat 
(Figure 4). Phragmites australis needs to be monitored by resource managers because of its propensity to out- 
compete other native and threatened plant species (Marks et al, 1994; Pyke et al, 1999). Routine surveillance of P. 
australis will help ensure that lateral advancement is controlled. Multispectral imagery and coincident field data 
found in Table 1 (average plot stand height, stems per meter, and average culm diameter) were acquired and then 
normalized after conversion using a linear scale transform with maximum score procedure (Malczewski, 1999). 
“Plots” represent the sample plot; “height” is average stand height in meters; “stems” are number of stems in a 
sample plot; “culm” represents the average diameter of stems measured 15cm above ground; “under” represents the 



 understory percentage of herbaceous plants; “biomass class” represents a categorical classification of biomass 
value, where “biomass” values are computed from the equation: H * S * C = B, where, H = average plot stand 
height, S = stems per meter, C = plot culm diameter, and B = plot biomass. 
 

The third study was the creation of a simple methodology for improving a land cover classification map of 
Parramore Island, VA.  Cover classification maps defined from image processing often contain errors. It is not 
uncommon to find that some mistakes are plainly visible. Targeting these misclassifications can be difficult with the 
standard tools available within image processing software. In this study, ecological rules were introduced to 
strategically target and correct classification mistakes. A four-step process was implemented. First, ecological expert 
knowledge was acquired about the study site. This could be acquired from field expertise or literature sources. 
Second, misclassifications were visually identified based on the expert knowledge. Third, IF-THEN-ELSE 
conditional statements were loosely developed to address the mistakes. Lastly, conditional statements were 
implemented within ERDAS Imagine Spatial Modeler image processing code as a post-classification correction 
model.  Conditional rules were converted into interpretable statements with ERDAS’ Majority Focus optional 
statements. All rules were spatial in nature, in that change was effected only by adjacency of feature class pixels 
identified by the model analyst. The analyst defined the criteria for selected pixels to change to a new, ecologically 
sound feature class. Six rule corrections were used to post-classify the Parramore Island cover class map that 
resulted in the conversion of over 20% (173 of the total 850 hectares) of the initial land cover classification pixels to 
alternative classes. The method of post-classification correction described in this section is portable in the sense that 
the rules can easily be changed and adopted to a new physiographic environment; the model template is extendable 
to new domains. 

 
The last study at Parramore Island investigated field data relationships between vegetation community 

classes and: elevation, soil type and soil compaction strength, with intent to develop empirical prediction models. 
Vegetation class was selected as the dependent variable because these types of data are considered to be readily 
interpretable from remote sensing source (Jensen, 1996). Accordingly, if vegetation classifications were established 
remotely, and empirical relationships were established between vegetation, soil, and elevation field data, then 
vegetation class maps could be used to estimate the other variables.  Strength of association non-parametric statistics 
were used to assess the inter-relationship between variables.  Elevation heights were grouped into one of three 
categories.  Soil type was divided into four classes and compared to vegetation community.  Soil compaction 
strength scores were recorded at depths of 0, 5, 15, 30, and 46cm. 

 
 

RESULTS and DISCUSSION 
 
STUDY SITE 1 

Based on the independent contribution of bandwidth alone, the narrower bandwidth imagery returned 
higher Kappa and overall accuracy scores, in addition to improvements in the transformed divergence scores for 
training samples that were difficult to spectrally separate into distinct classes. Specifically, 25nm imagery resulted in 
higher accuracy cultural feature classifications and a combination of natural and cultural features.  In a similar test, 
the independent contribution of spatial resolution was tested to determine if imagery with 4-m pixels returned 
statistically equivalent image classifications to imagery with 1m pixels. Transformed divergence scores of difficult 
to separate training sample pairs improved with the 4m imagery. Kappa scores suggest that natural features are 
better interpreted from 4m imagery than lm imagery. Classification accuracy of natural features from 4m imagery 
was consistently 5% better than accuracy achieved from lm imagery. Classification from cultural, and natural and 
cultural, features were statistically similar regardless of pixel size. 

 
The joint contribution of spectral and spatial resolution was evaluated. Accuracy results for the narrow 

bandwidth 25nm imagery with the larger 4m pixel size generally outperformed the other three image resolution 
combinations. The results were statistically different between 25nm/4m imagery and 70nm/lm imagery for a 
classification of both natural and cultural features, but were not statistically different between 25nm/4m and the 
remaining combinations. Figure 3 shows the combined contribution of spectral and spatial resolution as an overall 
accuracy of classification for natural and cultural features with training sample methods grouped into 25nm/lm, 
25nm/4m, 70nm/lm, and 70nm/4m classes, and plotted from highest to lowest to score to illustrate differences.  
Independently, accuracy of classifications from 25nm bandwidth imagery was statistically better than 70nm 
imagery; likewise, accuracy of classifications from 4m pixel size imagery was statistically better than 1m imagery 
for natural features.  

 



 
 
Six training sample methods were compared. An effective number of training sample pixels were acquired 

from both the seed grow 15- and 25 methods, as determined from the successful accuracy assessment scores of 
image classifications processed using these methods. These methods are a more replicable, objective training sample 
selection process. The polygon training sample method was also effective. 

 
STUDY SITE 2 

Biomass values were computed for each stand from normalized field data by a linear scale transform with 
maximum score procedure (Malczewski, 1999). Phragmites australis biomass and various combinations of image 
channel reflectance values were evaluated by clustering analysis tools. Classes and class members defined for 
biomass were closely matched to those of red-channel classes. Forward stepwise multiple regression was applied to 
selected image channel reflectance values to test for correlation to biomass class assignment.  Four image channels 
(green, blue, red, NIR) were identified as contributing to 96% of the overall variance, with the red-channel 
explaining 79% of the variance; red and NIR explaining a cumulative 85% of the variance; red, NIR, and green 
explaining a cumulative 90% of the variance; red, NIR, green, and blue explaining 96% of the variance (Table 2). 
 
 
STUDY SITE 3 

In Figures 5 a to d, a sequence from original unclassed imagery, to classified imagery, to post-classified 
imagery, to a final difference map are displayed. Multispectral imagery has been acquired and processed into 
classified imagery to demonstrate the impact of integrating post-classification rules. Figure 5a is an original 4-
channel multispectral imagery of Parramore Island, collected in May 1999 at an altitude of approximately 3,000 
meters above MSL which resulted in a nominal pixel size of approximately 1.5 meters, shown in a false-color 4-3-2 
band representation. Figure 5b is an initial supervised classification of land cover classes from the raw imagery, 
prior to the application of any rule-based classification to improve the results. Speckle and misclassifications are 
visually evident. Figure 5c shows the resulting map compilation after running the spatial model and making 
corrections to the original class map. Respective legends for Figures 5b and 5c identify the changes to class area in 
hectares. Spatial pattern was more reasonable with speckle and misclassified pixel areas removed in Figure 5c. 
Homogeneity typically found in vegetation complexes of the barrier island were evident in Figure 5c.  Lastly, Figure 
5d is the difference map between Figures 5b and 5c, depicting those pixels changed by the incorporation of the rules.    
 
STUDY SITE 4 

Maps depicting estimated elevation, soil type, and soil compaction are found in Figure 6. Figure 6a is the 
original multispectral 4-channel imagery, acquired in May 1999, displayed as a false color composite image of 
Parramore Island, Virginia.  Figure 6b shows both the vegetation classes that were derived from the imagery using a 
supervised classification method, and soil compaction attribution estimated for each class at 30 and 46cm depths. 
These estimates were based on earlier ANOVA and Cramer’s V tests indicating strength of association. Figure 6c is 
a soil type class map that was compiled by a simple recode of vegetation classes that had been grouped into three 
categories. Each vegetation class had a corresponding soil type that was mapped. Figure 6d is an elevation class map 
that was re-coded from vegetation classes that had been grouped into three categories.  

  
A Cramer's V score of association between 3- vegetation classes and their respective elevation values 

resulted in a positive score of: 0.99, with a value of 1.00 representing perfect association between the variables.  
Map found at Figure 6d.  Additionally, equations were developed from field transect to estimate dune height and 
crest location concealed by maritime forest. These ratios suggested consistency in dune shape, height, and crest 
location, with respect to overlying forest width.  Vegetation community class was shown to have a strong positive 
association with four soil type classes. The Cramer’s V score: 0.85, suggests that vegetation could be used to 
estimate soil type locations on Parramore Island.  The soil type map of the island (Figure 6c) provides insight into 
the physical processes of sediment delivery and removal that have shaped it’s geomorphology.   Multivariate 
analysis of variance between vegetation and soil compaction strength resulted in highly significant p-values at all 
depths.  Vegetation type explained the variance in soil compaction at deeper 30 and 46cm depths (R2 = 0.88 and 
0.72, respectively). Cramer’s V measures were computed for 10, 7, and 3-vegetation classes and soil compaction 
strength with scores of at least 0.85 for both 30 and 46cm depths. The greater variation in the soil compaction rates 
for 30 and 46cm depths was responsible for the increased Cramer’s V strength of relationship scores with vegetation 
type. Greatest variation in rates was observed for upper marsh communities, while least variation was consistently 
evident from the lower marsh S. alterniflora. and P. taeda dune communities (ranges, be depth,  found in Figure 6b). 
 



 
 

SUMMARY and CONCLUSIONS 
 

Image spectral and spatial resolution, in addition to training sample method, had a statistical effect on land 
cover classification accuracy.  25nm/4m imagery achieved the best classification accuracies of the four images 
tested.  Selection of image resolution should closely consider the intended cover classification mapping.  One-meter 
imagery was capable of separating P. australis stands into high, moderate and low-density biomass, with equivalent 
classes and membership that were derived from normalized field data. This finding begs the question: are high-
density stands the first to expand laterally, and if so, can remote sensing be useful for targeting high-density sites in 
need of immediate mitigation. Strategic mitigation of advancing P. australis would help resource managers protect 
higher-value plant communities and avert a potential decline in ecosystem health attributable to loss of plant 
diversity/complexity, loss of shelter/habitat, and decline in food source.  Ecology-based rules that wereapplied to a 
cover classification map showed that significant changes could continue to be made in improving map accuracy.  
Classification rules that were user-assigned gave direct control to the image analyst in the correction process. Lastly, 
estimation of soil properties and sub-meter elevation from vegetation community surrogates offered an alternative 
resource inventory collection technique.  Additionally, soil data was not collected and interpolated from point data, 
but rather as raster areal data.  

 
In each of the four studies, multi-spectral imagery played an integral role in defining the cover condition of 

a coastal landscape.  Remote sensing is an excellent tool to assist in the management of the coastal zone. Up-to-date 
imagery and landscape classes derived from it are essential tools to help resource managers make informed 
decisions.  Remote sensing should be driven by scientific hypothesis and any future modeling should account for a 
remote sensing and landscape process model merge (Wessman et al, 1998). To date, implementation of remote 
sensing in landscape ecology research and applications has been relatively scarce (Gulinck et al, 2000).  Ecological 
models should be designed to use direct or derived variables from remote sensing (Wessman et al, 1998). The results 
of the four studies completed for this paper suggests various image resolutions and methods to acquire resource data 
that might be used in landscape level ecological modeling.  
 

The future of remote sensing is bright. Detailed, accurate measurements of the ocean, land, and atmosphere 
are planned by satellite sensors. Many camera systems are already orbiting earth including the MODIS (Moderate-
Resolution Imaging Spectroradiometer) measuring biological and physical processes such as plankton, land 
vegetation, and clouds; MISR (Multi-angle Imaging Spectro-Radiometer), measuring atmospheric aerosols; 
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), providing 15m horizontal spatial 
resolution imagery for elevation and landform mapping, surface temperatures, and rock cover types, and MOPITT 
(Measurements of Pollution in the Troposphere) measuring methane and CO2 (Glaze, 1999). LIDAR technology 
offers particular promise for the mapping of elevations at 15 to 100cm vertical accuracy in an accurate, timely, and 
economical way (Hill et al, 2001). Hyperspectral sensors are currently acquiring data by airborne and satellite 
platform and hold promise for better spectral separation of biotic features due to narrower bandwidths. Ecological 
monitoring from remote imagery will continue, as testified to by the $30-million dollar annual remote sensing-based 
ecological monitoring and assessment program (EMAP), the National Science Foundation’s continued investment in 
remote sensing for their Long Term Ecological Research (LTER) program, and the US Forest Service use of 
imagery for their forest health monitoring program (Stone, 1995). 
 

Remote sensing offers a technological advantage to a resource manager.  A simple way to determine if 
remote sensing is an appropriate tool for coastal zone landscape characterization is to overwhelmingly answer “yes” 
to the following questions. 

 
• Are the desired landscape data useful for multiple projects? 
• Is this, or should this site be a routinely monitored? 
• Is this project too large to map on the ground with available resources? 
• Is the project site largely inaccessible? 
• Is this a project site best understood from a complete picture (imagery) rather than a sampling of field 

points? 
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TABLES AND FIGURES 
 

Table 1. Normalized Field Data. 
 

Plots 
 

 
Height 

 
Stems 

 
Culm 

 
Under 

 
Biomass 

Biomass 
Class 

phrag20 0.8 0.56 0.79 0 0.35 Moderate 
phrag21 1.0 0.59 0.92 0 0.55 High 
phrag22 1.0 0.79 1.00 0 0.79 High 
phrag23 0.8 0.40 0.63 0 0.20 Moderate 
phrag24 0.6 0.14 0.41 0.55 0.03 Low 
phrag25 0.6 0.60 0.75 0 0.27 Moderate 
phrag26 0.6 1 0.62 0 0.37 Moderate 
phrag27 0.4 0.051 0.53 0.7 0.01 Low 
phrag28 0.6 0.63 0.55 0.5 0.21 Moderate 
phrag29 0.8 0.93 0.54 0 0.40 Moderate 
 

Table 2. Summary of Stepwise Multiple Regression for Image Channel Reflectance Values 
Image Channel +in/-out Pearson’s R R2 R2 change p-level 

Red 1 0.89 0.79 0.79 0.00 
NIR 2 0.92 0.85 0.07 0.12 

Green 3 0.95 0.90 0.05 0.12 
Blue 4 0.98 0.96 0.06 0.05 

NDVI 5 0.99 0.97 0.01 0.30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Study Sites:  Fort Story and Parramore Island, Virginia, USA.            Figure 2.  False color MSI Imagery. 
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  Figure 3.  Spectral-Spatial Image Resolution Accuracy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 4.  Invasive P. australis Stand. 
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Figure 5a-d.  (a) Multispectral Imagery, (b) Classification, (c) Post-Classification, and (d) Difference Map. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6a-d. (a) False-color Imagery, (b) Vegetation Classification, (c) Soil Type, and (d) Elevation Range. 

(a)  

(d) (c)  

(b) 

S. alterniflora (101-137, 117-152)
S. patens (81-244, 71-504) 
T. angustifolia (132-310, 188-498)
P. australis (106-213, 218-437) 
I. frutescens (254-412, 280-376) 
M. cerifera (519-758, 310-946) 
P. taeda (458-483, 524-616) 
A. breviligulata 
Beach/sand 
Water 
 

< 1.40 meters 
1.40 - 1.68 meters 
> 1.66 meters 
Not classed 
Water 

Elevation Range Soil type 

Vegetation Class, w/ Soil 
Compaction Range (psi) 
Attributed at 12- and 18-inches       

Type 1- Saturated  
Type 2- Moist 
Type 3- Dry  
Type 4- Sand 
Water 
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