Global Change: VIMS Journal Articles

The following list is based on a search of VIMS-authored research articles from Thomson Reuters' Web of Science© using the title search terms climate or sea level and the keyword search terms carbon dioxide, global warming, climate change, acidification, or global change. The list is updated at least biannually.

  1. Beltran, R.S., et al., 2021. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc Biol Sci, 288(1947): p. 20202817. https://doi.org/10.1098/rspb.2020.2817
  2. Woodland, R.J., et al., 2020. Environmental Drivers of Forage Fishes and Benthic Invertebrates at Multiple Spatial Scales in a Large Temperate Estuary. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00835-9
  3. Thibodeau, P.S., et al., 2020. Long-term observations of pteropod phenology along the Western Antarctic Peninsula. Deep-Sea Research Part I-Oceanographic Research Papers, 166. https://doi.org/10.1016/j.dsr.2020.103363
  4. Thibodeau, P.S., D.K. Steinberg, and A.E. Maas, 2020. Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula. Journal of Experimental Marine Biology and Ecology, 530. https://doi.org/10.1016/j.jembe.2020.151412
  5. Schepers, L., et al., 2020. Evaluating indicators of marsh vulnerability to sea level rise along a historical marsh loss gradient. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4869
  6. Schepers, L., et al., 2020. Coastal Marsh Degradation Into Ponds Induces Irreversible Elevation Loss Relative to Sea Level in a Microtidal System. Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020GL089121
  7. Powell, E.N., et al., 2020. Growth and longevity in surfclams east of Nantucket: Range expansion in response to the post-2000 warming of the North Atlantic. Continental Shelf Research, 195. https://doi.org/10.1016/j.csr.2020.104059
  8. Pondell, C.R. and E.A. Canuel, 2020. Sterol, fatty acid, and lignin biomarkers identify the response of organic matter accumulation in Englebright Lake, California (USA) to climate and human impacts. Organic Geochemistry, 142. UNSP 103992 https://doi.org/10.1016/j.orggeochem.2020.103992
  9. Pershing, A.J. and K. Stamieszkin, 2020. The North Atlantic Ecosystem, from Plankton to Whales. Annual Review of Marine Science, Vol 12, 12: p. 339-359. https://doi.org/10.1146/annurev-marine-010419-010752
  10. Martinez-Soto, K.S. and D.S. Johnson, 2020. The density of the Atlantic marsh fiddler crab (Minuca pugnax, Smith, 1870) (Decapoda: Brachyura: Ocypodidae) in its expanded range in the Gulf of Maine, USA. Journal of Crustacean Biology, 40(5): p. 544-548. https://doi.org/10.1093/jcbiol/ruaa049
  11. Liu, W.W., et al., 2020. Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges. Limnology and Oceanography, 65(6): p. 1399-1409. https://doi.org/10.1002/lno.11395
  12. Langston, A.K., et al., 2020. Modeling long-term salt marsh response to sea level rise in the sediment-deficient Plum Island Estuary, MA. Limnology and Oceanography. https://doi.org/10.1002/lno.11444
  13. Johnson, D.S., et al., 2020. A climate migrant escapes its parasites. Marine Ecology Progress Series, 641: p. 111-121. https://doi.org/10.3354/meps13278
  14. Isdell, R.E., D.M. Bilkovic, and C. Hershner, 2020. Large Projected Population Loss of a Salt Marsh Bivalve (Geukensia demissa) from Sea Level Rise. Wetlands. https://doi.org/10.1007/s13157-020-01384-4
  15. Hein, C.J., et al., 2020. Millennial-scale hydroclimate control of tropical soil carbon storage. Nature, 581(7806): p. 63-+. https://doi.org/10.1038/s41586-020-2233-9
  16. Hasenei, A., et al., 2020. Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance. Biological Invasions, 22(6): p. 2079-2097. https://doi.org/10.1007/s10530-020-02241-5
  17. Friedman, J.R., et al., 2020. Seasonal Variability of the CO2 System in a Large Coastal Plain Estuary. Journal of Geophysical Research-Oceans, 125(1). https://doi.org/10.1029/2019JC015609
  18. Evans, K., et al., 2020. Comparative research on ocean top predators by CLIOTOP: Understanding shifts in oceanic biodiversity under climate change. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 175. https://doi.org/10.1016/j.dsr2.2020.104822
  19. Crear, D.P., et al., 2020. Contemporary and future distributions of cobia, Rachycentron canadum. Diversity and Distributions, 26(8): p. 1002-1015. https://doi.org/10.1111/ddi.13079
  20. Crear, D.P., et al., 2020. Estimating Shifts in Phenology and Habitat Use of Cobia in Chesapeake Bay Under Climate Change. Frontiers in Marine Science, 7. ARTN 579135 https://doi.org/10.3389/fmars.2020.579135
  21. Crear, D.P., et al., 2020. In the face of climate change and exhaustive exercise: the physiological response of an important recreational fish species. Royal Society Open Science, 7(3). ARTN 200049 https://doi.org/10.1098/rsos.200049
  22. Burge, C.A., et al., 2020. First comparison of French and Australian OsHV-1 mu vars by bath exposure. Diseases of Aquatic Organisms, 138: p. 137-144. https://doi.org/10.3354/dao03452
  23. Thibodeau, P.S., et al., 2019. Environmental controls on pteropod biogeography along the Western Antarctic Peninsula. Limnology and Oceanography, 64: p. S240-S256. https://doi.org/10.1002/lno.11041
  24. Stratton, M.A., G.M. Nesslage, and R.J. Latour, 2019. Multi-decadal climate and fishing predictors of abundance for US South Atlantic coastal fishes and invertebrates. Fisheries Oceanography, 28(5): p. 487-504. https://doi.org/10.1111/fog.12426
  25. Spackeen, J.L., et al., 2019. Impact of temperature, CO2, and iron on nutrient uptake by a late-season microbial community from the Ross Sea, Antarctica. Aquatic Microbial Ecology, 82(2): p. 145-159. https://doi.org/10.3354/ame01886
  26. Smith, E.A., et al., 2019. Treading Water: Tools to Help US Coastal Communities Plan for Sea Level Rise Impacts. Frontiers in Marine Science, 6. UNSP 300 https://doi.org/10.3389/fmars.2019.00300
  27. Shadwick, E.H., et al., 2019. High-Frequency CO2 System Variability Over the Winter-to-Spring Transition in a Coastal Plain Estuary. Journal of Geophysical Research-Oceans. https://doi.org/10.1029/2019jc015246  
  28. Schwieterman, G.D., et al., 2019. Combined Effects of Acute Temperature Change and Elevated pCO(2) on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate (Rostaraja eglanteria), Summer Flounder (Paralichthys dentatus), and Thorny Skate (Amblyraja radiata). Biology-Basel, 8(3). ARTN 56 https://doi.org/10.3390/biology8030056
  29. Rivest, E.B., et al., 2019. Mechanisms Involving Sensory Pathway Steps Inform Impacts of Global Climate Change on Ecological Processes. Frontiers in Marine Science, 6. UNSP 346 https://doi.org/10.3389/fmars.2019.00346
  30. Powell, E.N., et al., 2019. The intermingling of benthic macroinvertebrate communities during a period of shifting range: The "East of Nantucket" Atlantic Surfclam Survey and the existence of transient multiple stable states. Marine Ecology-an Evolutionary Perspective, 40(4). https://doi.org/10.1111/maec.12546
  31. Noyce, G.L., et al., 2019. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 116(43): p. 21623-21628. https://doi.org/10.1073/pnas.1904990116
  32. Nichols, C.R., et al., 2019. Collaborative Science to Enhance Coastal Resilience and Adaptation. Frontiers in Marine Science, 6. UNSP 404 https://doi.org/10.3389/fmars.2019.00404
  33. Mitchell, M. and D.M. Bilkovic, 2019. Embracing dynamic design for climate-resilient living shorelines. Journal of Applied Ecology, 56(5): p. 1099-1105. https://doi.org/10.1111/1365-2664.13371
  34. Lyons, K., et al., 2019. Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology. Conservation Physiology, 7. https://doi.org/10.1093/conphys/coz011
  35. Komatsu, K.J., et al., 2019. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 116(36): p. 17867-17873. https://doi.org/10.1073/pnas.1819027116
  36. Ivory, J.A., D.K. Steinberg, and R.J. Latour, 2019. Diel, seasonal, and interannual patterns in mesozooplankton abundance in the Sargasso Sea. Ices Journal of Marine Science, 76(1): p. 217-231. https://doi.org/10.1093/icesjms/fsy117
  37. Henley, S.F., et al., 2019. Variability and change in the west Antarctic Peninsula marine system: Research priorities and opportunities. Progress in Oceanography, 173: p. 208-237. https://doi.org/10.1016/j.pocean.2019.03.003
  38. Goldsmith, K.A., et al., 2019. Scientific considerations for acidification monitoring in the US Mid-Atlantic Region. Estuarine Coastal and Shelf Science, 225. UNSP 106189 https://doi.org/10.1016/j.ecss.2019.04.023
  39. Finlayson, C.M., et al., 2019. The Second Warning to Humanity - Providing a Context for Wetland Management and Policy. Wetlands, 39(1): p. 1-5. https://doi.org/10.1007/s13157-018-1064-z
  40. Crear, D.P., et al., 2019. The impacts of warming and hypoxia on the performance of an obligate ram ventilator. Conservation Physiology, 7. ARTN coz026 https://doi.org/10.1093/conphys/coz026
  41. Chmura, H.E., et al., 2019. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological Monographs, 89(1). UNSP e01337 https://doi.org/10.1002/ecm.1337 
  42. Van Dam, B.R., et al., 2018. Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries. Journal of Geophysical Research-Biogeosciences, 123(1): p. 271-287.  https://doi.org/10.1002/2017jg004243
  43. Tatters, A.O., et al., 2018. Interactive effects of temperature, CO2 and nitrogen source on a coastal California diatom assemblage. Journal of Plankton Research, 40(2): p. 151-164.  https://doi.org/10.1093/plankt/fbx074
  44. Richardson, J.P., J.S. Lefcheck, and R.J. Orth, 2018. Warming temperatures alter the relative abundance and distribution of two co-occurring foundational seagrasses in Chesapeake Bay, USA. Marine Ecology Progress Series, 599: p. 65-74.  https://doi.org/10.3354/meps12620
  45. Pace, S.M., E.N. Powell, and R. Mann, 2018. Two-hundred year record of increasing growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology, 503: p. 8-22.  https://doi.org/10.1016/j.jembe.2018.01.010
  46. Moomaw, W.R., et al., 2018. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 38(2): p. 183-205.  https://doi.org/10.1007/s13157-018-1023-8
  47. Lefcheck, J.S., et al., 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences of the United States of America, 115(14): p. 3658-3662.  https://doi.org/10.1073/pnas.1715798115
  48. Irby, I.D., et al., 2018. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences, 15(9): p. 2649-2668.  https://doi.org/10.5194/bg-15-2649-2018
  49. Hein, C.J., et al., 2018. Overcoming early career barriers to interdisciplinary climate change research. Wiley Interdisciplinary Reviews-Climate Change, 9(5). ARTN e530  https://doi.org/10.1002/wcc.530
  50. Hammer, K.J., et al., 2018. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Marine Ecology Progress Series, 604: p. 121-132. https://doi.org/10.3354/meps12740
  51. Groner, M.L., et al., 2018. Dermal mycobacteriosis and warming sea surface temperatures are associated with elevated mortality of striped bass in Chesapeake Bay. Ecology and Evolution, 8(18): p. 9384-9397. https://doi.org/10.1002/ece3.4462
  52. Glaspie, C.N., S.R. Jenkinson, and R.D. Seitz, 2018. Effects of Estuarine Acidification on an Oyster-Associated Community in New South Wales, Australia. Journal of Shellfish Research, 37(1): p. 63-72. https://doi.org/10.2983/035.037.0105
  53. Du, J.B., et al., 2018. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Science of the Total Environment, 630: p. 707-717. https://doi.org/10.1016/j.scitotenv.2018.02.265
  54. Clavero, M., et al., 2018. Nowhere to swim to: climate change and conservation of the relict Dades trout Salmo multipunctata in the High Atlas Mountains, Morocco. Oryx, 52(4): p. 627-635. https://doi.org/10.1017/S0030605316001551
  55. Al Mukaimi, M.E., T.M. Dellapenna, and J.R. Williams, 2018. Enhanced land subsidence in Galveston Bay, Texas: Interaction between sediment accumulation rates and relative sea level rise. Estuarine Coastal and Shelf Science, 207: p. 183-193. https://doi.org/10.1016/j.ecss.2018.03.023
  56. Steinberg, D.K. and M.R. Landry, 2017. Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Sciences, Vol 9, 9: p. 413-444. https://doi.org/10.1146/annurev-marine-010814-015924
  57. Spackeen, J.L., et al., 2017. Interactive effects of elevated temperature and CO2 on nitrate, urea, and dissolved inorganic carbon uptake by a coastal California, USA, microbial community. Marine Ecology Progress Series, 577: p. 49-65. https://doi.org/10.3354/meps12243
  58. Rivest, E.B., et al., 2017. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario. Proceedings of the Royal Society B-Biological Sciences, 284(1853). ARTN 20162825 https://doi.org/10.1098rspb.2016.2825
  59. Rao, V.P. and J.D. Milliman, 2017. Relict ooids off northwestern India: Inferences on their genesis and late Quaternary sea level. Sedimentary Geology, 358: p. 44-50. https://doi.org/10.1016/j.sedgeo.2017.06.004
  60. Powell, E.N., et al., 2017. Can we estimate molluscan abundance and biomass on the continental shelf? Estuarine Coastal and Shelf Science, 198: p. 213-224. https://doi.org/10.1016/j.ecss.2017.09.012
  61. Orth, R.J., et al., 2017. Submersed Aquatic Vegetation in Chesapeake Bay: Sentinel Species in a Changing World. Bioscience, 67(8): p. 698-712. https://doi.org/10.1093/biosci/bix058
  62. Mullon, C., et al., 2017. Exploring future scenarios for the global supply chain of tuna. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 140: p. 251-267. https://doi.org/10.1016/j.dsr2.2016.08.004
  63. Meynard, C.N., et al., 2017. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change. Global Change Biology, 23(11): p. 4739-4749. https://doi.org/10.1111/gcb.13739
  64. Manno, C., et al., 2017. Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Science Reviews, 169: p. 132-145. https://doi.org/10.1016/j.earscirev.2017.04.005
  65. Lefcheck, J.S., et al., 2017. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob Chang Biol. http://doi.org/10.1111/gcb.13623
  66. Zhu, Z., et al., 2016. A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica. Marine Ecology Progress Series, 550: p. 39-51. http://doi.org/10.3354/meps11732
  67. Walters, D.C. and M.L. Kirwan, 2016. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecology and Evolution, 6(9): p. 2948-2956. http://doi.org/10.1002/ece3.2024
  68. Phillips, R., et al., 2016. Fungal denitrification: Bipolaris sorokiniana exclusively denitrifies inorganic nitrogen in the presence and absence of oxygen. Fems Microbiology Letters, 363(4). ARTN fnw007
    http://doi.org/10.1093/femsle/fnw007
  69. Maynard, J., et al., 2016. Improving marine disease surveillance through sea temperature monitoring, outlooks and projections. Philosophical Transactions of the Royal Society B-Biological Sciences, 371(1689). ARTN 20150208
    http://doi.org/10.1098/rstb.2015.0208
  70. Kirwan, M.L., et al., 2016. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophysical Research Letters, 43(9): p. 4366-4373. http://doi.org/10.1002/2016gl068507
  71. Kirwan, M.L., et al., 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6(3): p. 253-260. http://doi.org/10.1038/Nclimate2909
  72. Duffy, J.E., et al., 2016. Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences of the United States of America, 113(22): p. 6230-6235. http://doi.org/10.1073/pnas.1524465113
    Cahill, B., et al., 2016. Interannual and seasonal variabilities in air-sea CO2 fluxes along the US eastern continental shelf and their sensitivity to increasing air temperatures and variable winds. Journal of Geophysical Research-Biogeosciences, 121(2): p. 295-311. http://doi.org/10.1002/2015jg002939
  73. Burge, C.A., et al., 2016. The Use of Filter-feeders to Manage Disease in a Changing World. Integrative and Comparative Biology, 56(4): p. 573-587. http://doi.org/10.1093/icb/icw048
  74. Boon, J.D. and M. Mitchell, 2016. Reply to: Houston, JR, 2016. Discussion of: Boon, JD and Mitchell, M., 2015. Nonlinear Change in Sea Level Observed at North American Tide Stations, Journal of Coastal Research, 31(6), 1295-1305. Journal of Coastal Research, 32(4), 983-987. Journal of Coastal Research, 32(4): p. 988-991. http://doi.org/10.2112/Jcoastres-D-16a-00001.1
  75. Blake, R.E. and J.E. Duffy, 2016. Influence of environmental stressors and grazer immigration on ecosystem properties of an experimental eelgrass community. Journal of Experimental Marine Biology and Ecology, 480: p. 45-53. http://doi.org/10.1016/j.jembe.2016.03.007
  76. Yang, Q.C., et al., 2015. Hydrological Responses to Climate and Land-Use Changes Along the North American East Coast: A 110-Year Historical Reconstruction. Journal of the American Water Resources Association, 51(1): p. 47-67. http://doi.org/10.1111/jawr.12232
  77. Weng, K.C., et al., 2015. Umbrella species in marine systems: using the endangered humphead wrasse to conserve coral reefs. Endangered Species Research, 27(3): p. 251-263. http://doi.org/10.3354/esr00663
  78. Weng, K.C., et al., 2015. Fishery management, development and food security in the Western and Central Pacific in the context of climate change. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 113: p. 301-311. http://doi.org/10.1016/j.dsr2.2014.10.025
  79. Hofmann, L.C., et al., 2015. CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia, 177(4): p. 1157-1169. http://doi.org/10.1007/s00442-015-3242-5
  80. Hobday, A.J., et al., 2015. Impacts of climate change on marine top predators: Advances and future challenges. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 113: p. 1-8. http://doi.org/10.1016/j.dsr2.2015.01.013
  81. Hobday, A.J., et al., 2015. Reconciling conflicts in pelagic fisheries under climate change. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 113: p. 291-300. http://doi.org/10.1016/j.dsr2.2014.10.024
  82. Del Raye, G. and K.C. Weng, 2015. An aerobic scope-based habitat suitability index for predicting the effects of multi-dimensional climate change stressors on marine teleosts. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 113: p. 280-290. http://doi.org/10.1016/j.dsr2.2015.01.014
  83. Walters, D., et al., 2014. Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model. Journal of Geophysical Research-Earth Surface, 119(9): p. 2013-2031. http://doi.org/10.1002/2014jf003091
  84. Varnell, L.M., 2014. Shoreline Energy and Sea Level Dynamics in Lower Chesapeake Bay: History and Patterns. Estuaries and Coasts, 37(2): p. 508-523. http://doi.org/10.1007/s12237-013-9672-6
  85. Smith, W.O., et al., 2014. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century. Geophysical Research Letters, 41(5): p. 1624-1631. http://doi.org/10.1002/2014gl059311
  86. Smith, W.O., et al., 2014. The Oceanography and Ecology of the Ross Sea. Annual Review of Marine Science, Vol 6, 6: p. 469-487. http://doi.org/10.1146/annurev-marine-010213-135114
  87. Moore, K.A., E.C. Shields, and D.B. Parrish, 2014. Impacts of Varying Estuarine Temperature and Light Conditions on Zostera marina (Eelgrass) and its Interactions with Ruppia maritima (Widgeongrass). Estuaries and Coasts, 37(1): p. S20-S30. http://doi.org/10.1007/s12237-013-9667-3
  88. Kennish, M.J., M.J. Brush, and K.A. Moore, 2014. Drivers of Change in Shallow Coastal Photic Systems: An Introduction to a Special Issue. Estuaries and Coasts, 37(1): p. S3-S19. http://doi.org/10.1007/s12237-014-9779-4
  89. Zhang, K.Q., et al., 2013. Comparison of three methods for estimating the sea level rise effect on storm surge flooding. Climatic Change, 118(2): p. 487-500. http://doi.org/10.1007/S10584-012-0645-8
  90. Waldbusser, G.G., E.N. Powell, and R. Mann, 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology, 94(4): p. 895-903.
  91. Sobocinski, K.L., et al., 2013. Historical Comparison of Fish Community Structure in Lower Chesapeake Bay Seagrass Habitats. Estuaries and Coasts, 36(4): p. 775-794. http://doi.org/10.1007/S12237-013-9586-3
  92. Sailley, S.F., et al., 2013. Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adelie penguin colonies: an inverse model approach. Marine Ecology Progress Series, 492: p. 253-272. http://doi.org/10.3354/meps10534
  93. Ruckelshaus, M., S. C. Doney, et al. 2013. Securing ocean benefits for society in the face of climate change. Marine Policy 40: 154-159. doi 10.1016/J.Marpol.2013.01.009
  94. Zhang, K. Q., Y. P. Li, et al. 2013. Comparison of three methods for estimating the sea level rise effect on storm surge flooding. Climatic Change 118(2): 487-500. doi 10.1007/S10584-012-0645-8
  95. Waldbusser, G. G., E. N. Powell, et al. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94(4): 895-903.
  96. Sobocinski, K. L., R. J. Orth, et al. 2013. Historical Comparison of Fish Community Structure in Lower Chesapeake Bay Seagrass Habitats. Estuaries and Coasts 36(4): 775-794. doi 10.1007/S12237-013-9586-3
  97. Duffy, J. E., L. A. Amaral-Zettler, et al. 2013. Envisioning a Marine Biodiversity Observation Network. Bioscience 63(5): 350-361. doi 10.1525/Bio.2013.63.5.8
  98. Goni, M. A., A. E. O'Connor, et al. 2013. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin. Journal of Geophysical Research-Oceans 118(9): 4017-4035. doi 10.1002/Jgrc.20286
  99. Sailley, S. F., H. W. Ducklow, et al. 2013. Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adelie penguin colonies: an inverse model approach. Marine Ecology Progress Series 492: 253-272. doi 10.3354/Meps10534
  100. Steinberg, D. K., M. W. Lomas, et al. 2012. Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochemical Cycles 26. doi 10.1029/2010gb004026
  101. Doney, S. C., M. Ruckelshaus, et al. 2012. Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, Vol 4 4: 11-37. doi 10.1146/Annurev-Marine-041911-111611
  102. Canuel, E. A., S. S. Cammer, et al. 2012. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface. Annual Review of Earth and Planetary Sciences, Vol 40 40: 685-+. doi 10.1146/Annurev-Earth-042711-105511
  103. Sun, S. C., X. W. Wu, et al. 2011. A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecological Monographs 81(2): 313-328.
  104. Munroe, D. M., E. N. Powell, et al. 2011. A Modelling Approach to Understanding Surf Clam (Spisula Solidissima) Mortality Patterns and Population Distribution Relative to Climate Change. Journal of Shellfish Research 30(2): 536-536.
  105. Tang, K. W., T. G. Nielsen, et al. 2011. Metazooplankton community structure, feeding rate estimates, and hydrography in a meltwater-influenced Greenlandic fjord. Marine Ecology-Progress Series 434: 77-99. doi 10.3354/Meps09188
  106. Wu, X. W., J. E. Duffy, et al. 2011. A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecological Monographs 81(2): 313-328.
  107. Lomas, M. W., D. K. Steinberg, et al. 2010. Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation. Biogeosciences 7(1): 57-70.
  108. Balazik, M. T., G. C. Garman, et al. 2010. Changes in age composition and growth characteristics of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) over 400 years. Biology Letters 6(5): 708-710. doi 10.1098/Rsbl.2010.0144
  109. Gerber, T. P., L. F. Pratson, et al. 2010. The influence of sea level and tectonics on Late Pleistocene through Holocene sediment storage along the high-sediment supply Waipaoa continental shelf. Marine Geology 270(1-4): 139-159. doi 10.1016/J.Margeo.2009.10.002
  110. Feng, Y., C. E. Hare, et al. 2010. Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-Sea Research Part I-Oceanographic Research Papers 57(3): 368-383. doi 10.1016/J.Dsr.2009.10.013
  111. Ducklow, H. W., S. C. Doney, et al. 2009. Contributions of Long-Term Research and Time-Series Observations to Marine Ecology and Biogeochemistry. Annual Review of Marine Science 1: 279-302. doi 10.1146/Annurev.Marine.010908.163801
  112. Titus, J. G., D. E. Hudgens, et al. 2009. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast. Environmental Research Letters 4(4): -. Artn 044008
  113. doi 10.1088/1748-9326/4/4/044008
  114. Moore, K. A. and J. C. Jarvis 2008. Environmental Factors Affecting Recent Summertime Eelgrass Diebacks in the Lower Chesapeake Bay: Implications for Long-term Persistence. Journal of Coastal Research 55(sp1): 135-147.
  115. Day, J. W., R. R. Christian, et al. 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31(3): 477-491. doi 10.1007/S12237-008-9047-6
  116. Hiscock, M. R., V. P. Lance, et al. 2008. Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron. Proceedings of the National Academy of Sciences of the United States of America 105(12): 4775-4780. doi 10.1073/Pnas.0705006105
  117. Shields, J. D., D. M. Taylor, et al. 2007. Epidemiological determinants in outbreaks of bitter crab disease (Hematodinium sp.) in snow crabs Chionoecetes opilio from Conception Bay, Newfoundland, Canada. Diseases of Aquatic Organisms 77(1): 61-72.
  118. Ducklow, H. W., K. Baker, et al. 2007. Marine pelagic ecosystems: The West Antarctic Peninsula. Philosophical Transactions of the Royal Society B-Biological Sciences 362(1477): 67-94.
  119. Duffy, J. E. and J. J. Stachowicz 2006. Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Marine Ecology-Progress Series 311: 179-189.
  120. Day, F. P., D. B. Stover, et al. 2006. Rapid root closure after fire limits fine root responses to elevated atmospheric CO2 in a scrub oak ecosystem in central Florida, USA. Global Change Biology 12(6): 1047-1053.
  121. Southworth, M. and R. Mann 2004. Decadal scale changes in seasonal patterns of oyster recruitment in the Virginia sub estuaries of the Chesapeake Bay. Journal of Shellfish Research 23(2): 391-402.
  122. Goodbred, S. L. and S. A. Kuehl 2003. The production, transport, and accumulation of sediment: a cross-section of recent developments with an emphasis on climate effects. Sedimentary Geology 162(1-2): 1-3.
  123. Oguz, T., T. Cokacar, et al. 2003. Climatic warming and accompanying changes in the ecological regime of the Black Sea during 1990s. Global Biogeochemical Cycles 17(3): -.
  124. Heroy, D. C., S. A. Kuehl, et al. 2003. Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change. Sedimentary Geology 155(3-4): 343-359.
  125. Miller, W. D., S. C. Neubauer, et al. 2001. Effects of sea level induced disturbances on high salt marsh metabolism. Estuaries 24(3): 357-367.
  126. Neubauer, S. C., W. D. Miller, et al. 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Marine Ecology-Progress Series 199: 13-30.
  127. Finkelstein, K. and M. S. Kearney 1989. Late Pleistocene Barrier-Island Sequence Along the Southern Delmarva Peninsula - Implications for Middle Wisconsin Sea Levels - Reply. Geology 17(1): 86-88.
  128. Milliman, J. D. 1989. Sea Levels - Past, Present, and Future. Oceanus 32(2): 40-42.
  129. Finkelstein, K. and M. S. Kearney 1988. Late Pleistocene Barrier-Island Sequence Along the Southern Delmarva Peninsula - Implications for Middle Wisconsin Sea Levels. Geology 16(1): 41-45.
  130. Goldsmith, V., R. A. Gammisch, et al. 1977. Wave-Climate Studies in Baltimore-Canyon-Trough Ocs Environmental Implications. AAPG Bulletin-American Association of Petroleum Geologists 61(5): 788-789.
  131. Milliman, J. D. 1977. Effects of Arid Climate and Upwelling Upon Sedimentary Regime Off Southern Spanish Sahara. Deep-Sea Research 24(1): 95-103.
  132. Summerhayes, C. P., J. D. Milliman, et al. 1976. Northwest African Shelf Sediments - Influence of Climate and Sedimentary Processes. Journal of Geology 84(3): 277-300.
  133. Milliman, J. D. and K. O. Emery 1968. Sea Levels during Past 35000 Years. Science 162(3858): 1121-&.